Effects of satellite clouds-corrected photolysis rates on ozone over CONUS

Young-Hee Ryu, A. Hodzic, J. Barre, G. Descombes

National Center for Atmospheric Research

P. Minnis

National Aeronautics and Space Administration (NASA)

G. Grell

National Oceanic and Atmospheric Administration/Earth Systems Research Laboratory/Global Systems Division (NOAA/ESRL/GSD)

Motivation

- Relatively less attention in air quality community since cloud-free skies are conducive to high ozone levels
- However, clouds play a critical role in UV radiation for photochemistry and so need to be well predicted.

Motivation

- Relatively less attention in air quality community since cloud-free skies are conducive to high ozone levels
- However, clouds play a critical role in UV radiation for photochemistry and so need to be well predicted.
- Recent studies using satellite cloud retrievals to quantify the effects of clouds on actinic fluxes/ photolysis rates (e.g., Ryu et al. 2017)

Motivation

- Relatively less attention in air quality community since cloud-free skies are conducive to high ozone levels
- However, clouds play a critical role in UV radiation for photochemistry and so need to be well predicted.
- Recent studies using satellite cloud retrievals to quantify the effects of clouds on actinic fluxes/ photolysis rates (e.g., Ryu et al. 2017)
- A few studies on effects of satellite-constrained (corrected) photolysis rates on ozone formation (Pour-Biazar et al. 2007; Tang et al. 2015)

Goals and methods

- Employ satellite-derived (GOES; Geostationary Operational Environmental Satellite) cloud optical depth and cloud boundaries in the WRF-Chem over CONUS for 2013 Summer
- Goals
 - Evaluate vertical profiles of photolysis rates in the presence of clouds using aircraft data (SEAC⁴RS)
 - Evaluate ground-level ozone biases statistically for a long term period (4 months in 2013)

• 12-km WRFchem simulations

- Simulation period: June–September 2013, Horizontal grid size: 12 km
- Chemistry mechanism: MOZART_MOSAIC_KPP
- New (updated) TUV for photolysis rate computations
- Meteorology: reinitialized every 2 days using FNL reanalysis (6-hr spin up is allowed in each 2-day simulation) & No nudging
- Control (CNTR) simulation: WRF-generated clouds
- GOES simulation: satellite-derived clouds only in the photolysis computations (TUV in WRF-Chem).

Comparison of WRF and satellite clouds

 Daytime (16–23 UTC) hourly Cloud Optical Depth (COD) over the WRF domain (land only) for the period of 11 June 2013 through 30 September 2013

		GOES satellite		
		Cloudy	Clear	
WRF	Cloudy	A (hit)	B (false alarm)	
	Clear	C (miss)	D (correct negative)	

Cloud Evaluation — Contingency

4-month domain averages

A = 27.1% B = 12.4% C = 17.5% D = 43.0%

Probability of detection (POD), A/(A+C), = 60.8%

JNO₂ comparison with SEAC⁴RS data

Cloudy-sky average

Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC⁴RS)

Ratio of Model JNO₂ to OBS JNO₂

Effects of cloud correction on O₃

8-h Ozone (O₃) average, CNTR (Control)

Effects of cloud correction on O₃

Example in Midwestern US

13 LST 8 July 2013

Maximum O_3 difference ~60 ppb

Reduction in 8-h O_3 bias due to clouds

• 8-h average O₃ bias is evaluated using EPA ground measurements for VOC-limited regimes and NOx-limited regimes.

- O₃ bias due to clouds reduced by 5.4 ppb in VOC-limited regimes, 2.75 ppb in NOxlimited regimes under cloudy sky conditions with COD threshold of 20
- Larger bias reduction in VOC-limited regimes

Reduction in 8-h O_3 bias due to clouds

8-h average O₃ bias is evaluated using EPA ground measurements for VOC-limited regimes and NOx-limited regimes.

- O₃ bias due to clouds reduced by 5.4 ppb in VOC-limited regimes, 2.75 ppb in NOxlimited regimes under cloudy sky conditions with COD threshold of 20
- Larger bias reduction in VOC-limited regimes

O₃ formation, OH, and HNO₃ with COD

Black line: median, cyan shading: 25 & 75 quartiles

- Primary OH formation decreases as COD increases due to decreasing JO1D. **VOC-limited (high NOx) NOx-limited (low NOx)**
- OH reacts with NO_2 and is removed.
- Low HO₂ (& RO₂)
- Low O₃ formation

- OH mainly reacts with VOCs producing HO_2/RO_2 •
- Considerable secondary OH sources ($HO_2 + NO$ \rightarrow OH + NO₂), which reaches a maximum at NOx
 - ~ 1ppb (Weinstock et al. 1981)

Summary and next step

- Satellite corrected photolysis rates and their vertical profiles show better agreements with airborne data.
- Satellite corrected photolysis rates are found to reduce O₃ biases by 1–6 ppb on average at the ground level.
- The reduction in O₃ (and bias) due to reduced radiation (due to clouds) is greater in VOC-limited regimes than NOx-limited regimes.
- In other words, more accurate cloud predictions would benefit more accurate O₃ predictions in VOC-limited regimes (polluted regions).
- Evaluate the effects and benefits of assimilation of satellitederived clouds on O₃ predictions

Thank you!

Comparison with NOMADSS campaign

Cloudy-sky average

Nitrogen, Oxidants, Mercury and Aerosol Distributions, Sources and Sinks (NOMADSS)

Ratio of Model JNO₂ to OBS JNO₂

Effects on 8-h O₃ bias

Cloudy sky conditions

$\sum 10^{17} = 1[COD > COD threshold] / 8 \ge 0.5$

- O₃ bias due to clouds reduced by 2.7 ppb in VOC-limited regimes, 1.5 ppb in NOxlimited regimes under cloudy sky conditions with COD threshold of 5
- Larger bias reduction in VOC-limited regimes

VOC-limited/NOX-limited regimes

- For EPA ground stations, ratio $\Delta O_3 / \Delta NO_y$ is used to identify the sensitivity regime.
- NOx-VOC transition: $\Delta O_3 / \Delta NO_v = 4 6$ (Sillman and He, 2002)

Test with a box model (BOXMOX)

- Same chemical mechanism (MOZART-4)
- Initial conditions/Emissions from WRFChem
- VOC-limited: Chicago urban area
- NOx-limited: Subruban of Chicago
- 12-hour runs

Effects on ground-level ozone

Clouds, 2013-07-08_18:00:00

Diff. O₃ (WRF - GOES)

		WRF	
		cloudy	clear
	cloudy	Α	В
GOES	clear	С	D

Effects on O₃ formation and radicals

- Primary OH formation from O1D + H2O is linearly dependent on JO1D.
- Larger sensitivity of O₃ formation and OH radical to changes in COD in VOC-limited regimes

Effects on radical sinks

- VOC-limited regime: formation of HNO₃ is the major sink of HOx radicals
- NOx-limited regime: formation of H_2O_2 (& ROOH) is the major sink of HOx radicals

12-km WRFChem simulations

- WRFChem V3.6.1, a single domain over CONUS
- Simulation period: June–September 2013, Horizontal grid size: 12 km
- Chemistry mechanism: MOZART_MOSAIC_KPP
- Meteorology: reinitialized every 2 days using FNL reanalysis (6-hr spin up is allowed in each 2-day simulation) & No nudging
- Chemistry: cycled/continuous
- Control (CNTR) simulation uses WRF-generated clouds.
- GOES simulation uses GOES (Geostationary Operational Environmental Satellite) clouds
 - Available originally 8-km horizontal resolution every hour from 11 June 2013
 - In the GOES simulation, GOES cloud bottom/top height and cloud optical depth retrievals are used and updated every hour.
 - The GOES clouds are used instead of WRF-generated clouds only in the photolysis computations (TUV in WRF-Chem).
 - The GOES clouds are not used in other dynamics and physical processes such as atmospheric radiation and microphysics.