

Impact of Assimilating GOES-Imager radiance with a rapid refresh assimilation system for convection-permitting forecast over Mexico

Chun Yang¹, Jake Liu², Feng Gao³, Peter Childs³, Jinzhong Min¹

¹Nanjing University of Information Science & Technology
²National Center for Atmospheric Research
³Panasonic Weather Solution

GOES-Imager

Data Source: NESDIS CLASS (Comprehensive large array-data stewardship system) NetCDF format

GOES-15 (West) GOES-13 (East)

Full disk imagery of every 15 minutes from two satellites

GOES-Imager

GOES-Imager: 5 channels

Channel Number	Center Frequency ()	Data Resolution (km)
1	0.65	1.0
2	3.9	4.0
3	6.5	4.0
4	10.7	4.0
6	13.3	8.0

Channels weighting function

Data Calibration

GVAR count (0-1023) then converted to scene radiance

R = (X-b)/m

• R: radiance; X: GVAR count; m & b: calibration coefficients

• Then convert radiance to effective temperature

$$T_{eff} = \frac{c_2 * v}{\ln \left[1 + (c_1 * v^3) / R \right]} \qquad c_1 = 1.191066 \times 10^{-5}$$
$$c_2 = 1.43833$$

Finally convert effective T to brightness T

$$T = \alpha + \beta * T_{eff} + \gamma * T_{eff}^{2}$$

Weinreb and Han (2011)

Data Geolocation

2

GOES-13 located at 75° W, ~36000km above equator

$$\begin{split} &lon_{sat} = -75^* \pi / 180 \\ &\theta = \left| lon - lon_{sat} \right| \\ &r_1 = \left(2^* r_e^* \sin(\theta / 2) - r_e^* (1 - \cos(lat))^* \sin(\theta / 2) \right)^2 \\ &+ \left(2^* r_e^* \sin(lat / 2) \right)^2 - \left(r_e^* (1 - \cos(lat))^* \sin(\theta / 2) \right)^2 \\ &\theta_1 = 2^* \sin^{-1} \left(\left(2^* \sin^{-1} \sqrt{r_1} \right) / r_e / 2 \right) \\ &\theta_2 = \tan^{-1} \left(r_e^* \sin \theta_1 / \left(r_h + r_e^* (1 - \sin \theta_1) \right) \right) \\ &\theta_z = \left(\theta_1 + \theta_2 \right)^* 180 / \pi \end{split}$$

- θ_z Satellite zenith angle,
- r_e Earth radius,
- r_h Satellite altitute

Quality Control

- 1. Reject pixels over mixed land surface
- 2. Channels 4 and 6 only used over water, channel 3 used over both land and water
- 3. Reject pixels with the model background CLWP>0.2mm
- 4. Cloud-detection: use Tb4 (model) Tb4 (obs) (Hocking et al, 2010)
- 5. Background departure (OMB) check

A heavy rainfall event

2016030900

59

80W

Configuration

2016030700-0900, hourly cycling, dual-res. Hybrid + blending 0712、0800、0812、0900 24-h forecast CON: GTS+TAMDAR+AMSUA GOES_IMG: GTS+TAMDAR+AMSUA+GOES-Imager (channels 3, 4, 6)

Radiance Variational Bias Correction

Time series of Analysis Verify against TAMDAR

Analysis valid at 00 UTC, 2016/03/09

Observed WV channel

No GEOS-Imager DA

With GOES-Imager DA

Cloudy radiances

Analysis at 03/09/2016 00z

500 hPa Z and 850 hPa moisture difference

24-h forecast valid at 00 UTC, 2016/03/10

Observed WV channel

No GEOS-Imager DA

With GOES-Imager DA

24-h forecast verify against GEOS-Imager cloudy radiances

24-h precipitation forecast

CONTROL

GOES-Imager

Precip. Forecast Ccore

Summary

- GOES-Imager radiance DA capability is implemented in WRFDA.
- GOES-Imager Radiance DA improved T and Q analysis (and cloud field from DA cycling effect)
- Lead to improved precipitation forecast for a heavy rainfall event

Yang. C., Z. Liu, F. Gao, P. Child, J. Min, 2017: Impact of Assimilating GOES-Imager Clear-sky Radiance with a Rapid Refresh Assimilation System for Convection-Permitting forecast over Mexico, J. G. R. Atmosphere, 122, 5472 – 5490.