
KIT	–	The	Research	University	in	the	Helmholtz	Association www.imk-ifu.kit.edu

4	METEOGROUP,	RESEARCH	DEPARTMENT

2	AUGSBURG	UNIVERSITY,	INSTITUTE	OF	GEOGRAPHY,	CHAIR	OF	REGIONAL	CLIMATE	AND	HYDROLOGY

Variable-resolution	modelling	and	extreme	scaling	applications 
with	the	Model	for	Prediction	Across	Scales	(MPAS)

Dominikus	Heinzeller1,2,	Michael	Duda3,	Matthijs	Kramer4,5,	Hugo	Hartmann4, 
Wim	van	den	Berg4,	Gert-Jan	Steeneveld5,	Harald	Kunstmann1,2
1	KARLSRUHE	INSTITUTE	OF	TECHNOLOGY,	INSTITUTE	OF	METEOROLOGY	AND	CLIMATE	RESEARCH

5	WAGENINGEN	UNIVERSITY,	METEOROLOGY	AND	AIR	QUALITY	SECTION

3	NATIONAL	CENTER	FOR	ATMOSPHERIC	RESEARCH,	MESOSCALE	AND	MICROSCALE	METEOROLOGY	LABORATORY

Going	global	and	variable	-	more	bang	for	the	buck?Intro	into	MPAS

WRF
• Regional,	nested
• Artifacts	at	edges
• Boundary	conditions

MPAS
• Global,	irregular	grid
• No	edges:	no	artifacts
• Global:	no	BC
• Borrows	techniques	
from	WRF

WRF	
• Regional,	nested	modelling	
• Artefacts	at	edges	(reflection	of	waves)	
• Boundary	forcing	from	external	model	
• Multiple	domains	for	global	applications	
• Highly	customisable	and	widely	used

MPAS	
• Global,	(ir)regular	Voronoi	grid	
• Smooth	transitions	(local	filters)	
• No	boundary	conditions	
• Multiple	high-res	areas	in	one	domain	
• Techniques	and	schemes	from	WRF

An	NWP	study	of	three	selected	events	over	Europe

• 72h	and	84h	short-term	forecasts	
• Variable-resolution	meshes	transitioning	the	grey 
zone,	using	the	Grell	&	Freitas	(2014)	cu	scheme	

• Uniform	3km	mesh	as	reference	model	(4	x	72h	fcst)	
• Validation	against	operational	WRF	configuration  
at	MeteoGroup,	with	Wageningen	University	

60-3km	mesh	with	high-resolution	area 
centred	over	Europe	(sim.	for	30-3km)

15-3km	mesh	with	high-resolution  
area	centred	over	Europe

Operational
3km WRF
domain EU

Mesh nCells Conv
60-3km 835,586 GF
30-3km 1,294,335 GF
15-3km 6,488,066 GF

3km 65,536,002 GF/off
WRF	3km 612	x	612 off

• Convective	storm	(front)	case,  
Netherlands,	October	2013 
 

strong	depression	(980	hPa), 
multiple	frontal	systems 
caused	heavy	winds 
and	casualties/damage 

• Hail	case,	Netherlands, 
December	2015  
 

stationary	warm	front, 
heavy	thunderstorms, 
hail	up	to	6	cm	and	winds	up	to	34	m/s	

• Foehn	case,	Switzerland,	November	2014 
 

high	winds,	topographic	lifting

Storm,	foehn,	hail	-	three	selected	synoptic	situations

Sea-level	pressure	and	wind,	Nov	4	10:00	UTC

Kramer	et	al.,	in	preparation	for	special	issue	in	Clim.	Dyn.

MPAS	3km	03_12

Foehn	case,	Switzerland,	Nov.	2014:	model	results	I

2m	temperature	[°C],	Nov	4	10:00UTC

WRF	3km	03_00 MPAS	60-3km	03_00 MPAS	60-3km	03_12

MPAS	30-3km	03_00

MPAS	3km	03_12

Foehn	case,	Switzerland,	Nov.	2014:	model	results	II

Cumulative	precipitation	[mm]	since	initialisation,	Nov	6	00:00UTC

WRF	3km	03_00 MPAS	60-3km	03_00 MPAS	60-3km	03_12

MPAS	30-3km	03_00

Foehn	case,	Switzerland,	Nov.	2014:	model	results	III

Time	series	of	accumulated	precipitation	
at	location	of	maximum	precipitation

• Selecting	single	location	for 
model	and	observations	to  
focus	on	extreme	character	

• Onset	late	for	all	runs,	best 
for	WRF	3km/MPAS	30-3km 
(startup	too	close	to	event?)	

• 15-3km	runs	work	in	progress

model	temp	max 
model	precip	max	
station	temp	max  
station	precip	max

Exascaling	is	projected	for	the	end	of	this	decade

The	leading	operational	NWP  
centres	(ECMWF,	NOAA)	are  
pushing	towards	convection- 
permitting,	global	forecasts.	

• ECMWF	is	working	on	the 
FVM	(Finite	Volume	Model)	

• NOAA	has	chosen	the	GFDL  
FV3	model	to	replace	GFS	

As	individual	CPU	cores	are	not 
getting	any	faster,	next-generation  
HPC	systems	will	scale	out	to	even  
larger	numbers	of	cores	and	resort 
to	accelerators	and	many-core	chips.

K	computer, 
Kobe,	Japan

Show	stoppers	on	next	generation	HPC	environments

Disk	I/O	bottleneck	

Highly	scalable	and	fast	I/O	libraries	such	as 
SIONlib	for	internal	(and	external)	data.	

MPI	communication	overhead	
 

Hybrid	MPI+OpenMP:	fewer	tasks	sending 
data	(key	for	porting	to	Knights	Landing)  

MPAS 3km on JUQUEEN 2015

KONWIHR	(Competence	Network	for	Scientific	High	Performance	Computing)	grant	for	the	
Improvement	of	I/O	layer	and	hybrid	parallelisation	of	the	Model	for	Prediction	Across	Scales.NCAR%NCAS'MPAS'Tutorial,'19'September'2015,'Chester,'UK'

PARALLEL DECOMPOSITION (2)
Given an assignment of cells to a process, any number of
layers of halo (ghost) cells may be added

Block of cells owned
by a process

Block plus one layer
of halo/ghost cells

Block plus two layers of
halo/ghost cells

Cells are stored in a 1d
array (2d with vertical
dimension, etc.), with halo
cells at the end of the array

With a complete list of cells
stored in a block, adjacent
edge and vertex locations can
be found; we apply a simple
rule to determine ownership of
edges and vertices adjacent
to real cells in different blocks

19'

Block	of	owned	cells	No  
and	2	layers	of	halo	cells	Nh

D. Heinzeller et al.: MPAS: an extreme scaling experiment 81

On Juropatest, we conduct two sets of runs for each of
the test cases: for the first set (Jtest-half in the following),
we use only one of the two available 14-core CPUs in each
node, which implies a similar number of cores per node for
Curie and Juropatest or, in other words, a similar number of
nodes for the same total number of tasks. In this configu-
ration, each task is bound to one core on the node. For the
second set (Jtest-full in the following), we use both CPUs,
i.e. 28 cores on each node to exploit the capabilities of the
Juropatest system and the possible memory bandwidth limi-
tations of MPAS-A.

2.2 MPAS-A code

For the strong-scaling studies in this paper, we use MPAS-
A v3.1, released on 24 November 2014. This release of the
model employs a horizontal domain decomposition for paral-
lel execution, and parallelisation is implemented using MPI
only; in this version of the code, no threading is used. The
MPAS code is written almost entirely in Fortran 2003, with
a few minor parts written in C. The MPAS build system
uses only the make utility, with settings for different com-
pilers and architectures described as different targets in the
top-level Makefile; see Appendix A for the compiler flags
used in this study.
The optimal parallelisation and distribution of the cells of

the Voronoi mesh for a given number of tasks is treated as
a graph partitioning problem. The dual mesh of a Voronoi
tessellation is a Delaunay triangulation, which immediately
provides the connectivity graph for the primal (i.e. Voronoi)
cells in the mesh. In MPAS, the graph partitioning is com-
puted as a separate pre-processing step for which the METIS
software is used7. An optimal partitioning distributes equal
work (by proxy, the number of cells) to each task while min-
imising the edge cut (assumed to model the communication
between tasks). METIS uses a multilevel k-way partitioning
scheme, which produces partitions of comparable quality to
traditional multilevel bisection algorithms and is about 2 or-
ders of magnitude faster (Karypis and Kumar, 1998). The
resulting graph partitioning can be critical for the model per-
formance due to, for example, a large overhead of communi-
cation and computational imbalances between the individual
partitions.
At start-up, the MPAS-A model reads a file that assigns

Voronoi cells to each of the MPI tasks according to a parti-
tioning produced by METIS. The set of cells assigned to an
MPI task is referred to as a block, and the cells in this assign-
ment are referred to as the owned cells. The dynamical solver
in MPAS-A requires stencils of cells in order to apply various
operators, and as part of the model start-up, referred to inter-
nally as the bootstrapping process, a pre-determined number
of layers of halo cells (sometimes referred to as ghost cells
in other modelling systems) are added around each block.

7http://glaros.dtc.umn.edu/gkhome/views/metis

Although the number of halo cells can vary between differ-
ent MPAS models, as illustrated in Fig. 1 (lower left panel),
MPAS-A adds two layers of halo cells around each block of
cells. A lower bound for the number of halo cells Nh for a
given number of owned cells No can be estimated as

Nh = ⇡

√r
No
⇡

+ 2
!2

� No . (1)

At points in the MPAS-A dynamical solver where current
values of fields in halo cells are required, values are commu-
nicated between tasks, from owned cells to ghost cells, with
point-to-point MPI communications.
An important aspect and common bottleneck in numerical

weather prediction and climate modelling is disk I/O, since
large 4-D fields such as temperature, geopotential height
or wind components need to be written to the disk fre-
quently. In MPAS v3.1, I/O is facilitated by the parallel I/O
library (PIO) v1.7.1, a wrapper with an easy-to-use applica-
tion programme interface (API) that encapsulates the com-
plexity of parallel I/O for a number of supported formats: bi-
nary, serial NetCDF8, Parallel-NetCDF9 and recently (since
v.1.9.14) parallel NetCDF-4 through PHDF510 (Dennis et al.,
2013). PIO is compiled without further optimisation (stan-
dard settings) on all four machines. The HDF5, NetCDF
and Parallel-NetCDF libraries are provided as modules on
all four systems.
Unless stated otherwise, all experiments are conducted

with double precision floating point precision, 41 atmo-
spheric levels, 4 soil levels, a full suite of physics and dy-
namics (see Appendix B for details), and standard disk I/O.
Each experiment is run for 24 h model time, during which
an initial conditions file is read (init.nc), diagnostic out-
put files are written every 3 h (diag.nc), and a final restart
file and a comprehensive output file are written at the end
(restart.nc, output.nc). The model integration time
step depends on the grid resolution and is mentioned in the
individual sections below. Note that for variable-resolution
meshes, the global time step is determined by the smallest
grid size. By default, all tasks participate in the parallel I/O.
Each experiment is repeated once or twice, depending on
how close the measured run times are, to account for fluc-
tuations of single experiments.

2.3 Regular 120 km grid

The first and smallest test case consists of a global, regular
120 kmmesh with 40 962 grid cells, which is roughly compa-
rable in resolution to a 284⇥142 (latitude–longitude) grid. It
is thus in the range of current Earth system models. A model
integration time step of 150 s is adopted. For a resolution of

8http://www.unidata.ucar.edu/software/netcdf
9http://trac.mcs.anl.gov/projects/parallel-netcdf
10http://www.hdfgroup.org/HDF5

www.geosci-model-dev.net/9/77/2016/ Geosci. Model Dev., 9, 77–110, 2016

Implementation	of	SIONlib	I/O	layer	in	MPAS	v4.0+

SIONlib	-	scalable	I/O	library	for	(massively)	parallel	
access	to	task-local	files	(Wolfgang	Frings,	FZJ)	

Addition	of	SIONlib	I/O	layer	to	currently	supported  
I/O	formats	(netCDF,	pnetCDF,	netCDF4	through	PIO), 
mimicking	netCDF	file	structure	(metadata,	data).	

Reading/writing	in	SIONlib	format	requires	to	use	the 
same	number	of	tasks	and	the	same	graph	partition.  

Information	encoded	in	SIONlib	data	can	be	used	to 
skip	parts	of	the	bootstrapping	at	model	startup.

http://www.fz-juelich.de/ias/jsc/EN/Expertise/
Support/Software/SIONlib/_node.html	

<stream	name="history"	
								type="output"	
								io_type="pnetcdf,cdf5"	
								filename_template="history.nc"	
								output_interval="03:00:00">	
				<file	name="stream_list.history"/>	
</stream>

<stream	name="diagnostics"	
								type="output"	
								io_type="sionlib"	
								filename_template="diagnostics.sl"	
								output_interval="00:15:00">	
				<file	name="stream_list.diagnostics/>	
</stream>

pnetcdf,	cdf5 sionlib

Global	2km	mesh	on	LRZ	SuperMUC

Uniform	2km	mesh	with	147	Mio	grid	cells, 
2048	nodes	x	16	MPI	x	1	OpenMP	tasks

timer	name total
1 total	time 3585
2 		initialise 1176
3 				bootstrapping 540
3 				stream	input 612
2 		time	integration 1580
2 		stream	output 818

timer	name total
1 total	time 2117
2 		initialise 244
3 				bootstrapping 168
3 				stream	input 52
2 		time	integration 1658
2 		stream	output 204

0.5

1

1.5

2

2.5

3

3.5

4

4.5

100000 200000 300000 400000 500000

Sp
ee
du
p

Cores	=	MPI	tasks

Scaling	of	MPAS-A	 2km	- idealised	JW	test	case

real	 scaling ideal	 scaling

7 racks 14 racks 21 racks 28 racks

Preparing for exascale: A global 2 km atmospheric

scaling experiment with the Model for Prediction Across

Scales (MPAS)

Dominikus Heinzeller, Karlsruhe Institute of Technology,
Institute of Meteorology and Climate Research,

Garmisch-Partenkirchen, Germany

Michael Duda, National Center for Atmospheric Research,
Mesoscale and Microscale Meteorology Laboratory,

Boulder, CO, USA

Description of the Code

The weather- and climate-modelling community is currently seeing a shift in paradigm from
limited area models towards novel approaches involving global, complex and irregular meshes.
A promising and prominent example for this is the Model for Prediction Across Scales (MPAS)
[1]. MPAS is a novel set of Earth system simulation components and consists of an atmospheric
core, an ocean core, a land-ice core and a sea-ice core. Its distinct features are the use of
unstructured Voronoi meshes and C-grid discretisation (see Fig. 1) to address shortcomings
of global models on regular grids and the use of limited area models nested in a forcing data
set, with respect to parallel scalability, numerical accuracy and physical consistency [2]. The
unstructured Voronoi meshes employed by all MPAS cores allow variable resolutions across
the globe with smooth transitions between different areas of refinement, making it possible to
conduct global modelling experiments at reasonable computational costs.

Nonetheless, with exascale computing projected for the end of this decade and the fact
that energy requirements and physical limitations will imply the use of accelerators and the
scaling out to orders of magnitudes larger numbers of cores than today, it is paramount to
prepare modern codes like MPAS for this future. In a previous extreme scaling experiment
on JUQUEEN in 2015, the atmospheric core MPAS-A has been tested on up to half a million
cores for a global 3 km mesh with 65 million grid cells. These experiments highlighted several
bottlenecks such as the disk I/O and the initial bootstrapping process during the model setup
that need to be addressed to fully exploit the capabilities of exascale computing systems [3].
The dynamical solver of MPAS-A maintained a very high parallel efficiency in the 2015 extreme
scaling experiment up to 24 576 nodes. For the entire system with 28 672 nodes, the parallel
efficiency dropped substantially and the model integration time was longer than for 24 576
nodes. This is related to the number of owned cells per MPI task, which we found to be a
robust indicator for the breakdown of the parallel performance across HPC systems and mesh
sizes. This limit lies around 200 owned cells per task and varies slightly with the speed of
the interconnect of the system (i.e. it is lower for faster interconnects). On JUQUEEN, we
determined this limit to be approximately 160 for all tested meshes [2].

23

Extreme	scaling	2017:	2km,	147	Mio	cells	on	JUQUEEN

Idealised	test	case:	Jablonowski  
and	Williamson	(2006)	baroclinic	wave	

• Regular	2km	mesh,	147	Mio	cells	
• Initial	conditions	file	1.8TB	SIONlib	
• 10min	model	integration	
• Disk	output	(SIONlib):	4TB	in	total	
• Dynamics	+	I/O,	no	physics:	more 
stringent	test	of	dynamical	solver

Conclusions	&	Outlook

Variable-resolution	models	can	address	limitations	of	nested	models	at	reasonable	cost.	
Scale-aware	physics	parameterisations	need	further	attention,	and	further	performance	
improvements	are	required	to	make	MPAS	run	as	fast	or	faster	than	WRF	(per	grid	cell).	

Global,	convection-resolving	atmospheric	simulations	are	within	reach	of	current	and  
next-generation	HPC	systems.	Keys	to	success	are	an	efficient	I/O	layer	for	massively	
parallel	applications	and	an	adaptation	for	many-core	processors	and	accelerators.	

What’s	next?	Stay	tuned	for	MPAS	1km	on	HLRS	Hazel	Hen	(Cray	CX40)! 
580	million	grid	cells,	minimum	500TB	memory,	initial	conditions	approx.	12	TB

Kramer	et	al.,	in	prep.

Heinzeller	et	al.,	in	prep.

14

Bonus	features

Runtime	performance	MPAS	versus	WRF

MPAS	60-3km:	scaling	of	the	time	integration	
(dynamics	+	physics	+	file	output)	as	function	
of	tasks	(bottom)	or	cells	per	task	(top).

Using	a	scalable	I/O	library,	the	performance 
of	the	time-integration	depends	only	on	the 
number	of	cells	per	task	(mesh-independent).

WRF	setup	optimised	on	MeteoGroup	cluster,	
MPAS	out	of	the	box	on	SuperMUC.

Configuration WRF MPAS
Vertical	levels 42 55
Microphysics WSM6 Thompson
Cumulus - Grell-Freitas
Boundary	layer MYNN MYNN
Longwave	radiation RRTMG RRTMG
Shortwave	radiation RRTMG RRTMG
Surface	layer MYNN MYNN
Land-surface NOAH NOAH

36h	forecast	scenario Mesh nCells Cores	required Core-hours	fcst

Integration	time	[h] 36 3km 65,536,002 62,832 251,328

Time	to	solution	[h] 4 15-3km 386 6176 24,704

Cells	per	task 1050 30-3km 77 1232 4928

Cores	per	node 16 60-3km 50 800 3200

Cores	per	node	(WRF) 10 WRF	3km 7 70 280

Optimisation	of	hybrid	MPI+OpenMP	parallelisation

In	MPAS-Atmosphere,	threading	using	OpenMP	inside	MPI	is	implemented	for	the	time-
integration	routine	only.	A	simple	change	to	the	hybrid	implementation	and	threading	of 
one	additional	routine	yield	impressive	performance	improvements.  

Original	code	

!	call	non-threaded	function	
...	
!$OMP	PARALLEL	DO	
do	thread=1,nThreads	
			!	call	threaded	function	
end	do	
!$OMP	END	PARALLEL	DO	
...		
!$OMP	PARALLEL	DO	
do	thread=1,nThreads	
			!	call	threaded	function	
end	do	
!$OMP	END	PARALLEL	DO

Optimised	code	

!$OMP	parallel	
...	
!$OMP	do	schedule(static,1)	private(thread)	
do	thread=1,nThreads	
			!	call	threaded	function	
end	do	
!$OMP	end	do	
...		
!$OMP	master	
!	call	non-threaded	function	
!$OMP	end	master	
...	
!$OMP	end	parallel

Optimisation	of	hybrid	MPI+OpenMP	parallelisation

In	MPAS-Atmosphere,	threading	using	OpenMP	inside	MPI	is	implemented	for	the	time-
integration	routine	only.	A	simple	change	to	the	hybrid	implementation	and	threading	of 
one	additional	routine	yield	impressive	performance	improvements.  

Original	code	

!	call	non-threaded	function	
...	
!$OMP	PARALLEL	DO	
do	thread=1,nThreads	
			!	call	threaded	function	
end	do	
!$OMP	END	PARALLEL	DO	
...		
!$OMP	PARALLEL	DO	
do	thread=1,nThreads	
			!	call	threaded	function	
end	do	
!$OMP	END	PARALLEL	DO

Optimised	code	

!$OMP	parallel	
...	
!$OMP	do	schedule(static,1)	private(thread)	
do	thread=1,nThreads	
			!	call	threaded	function	
end	do	
!$OMP	end	do	
...		
!$OMP	master	
!	call	non-threaded	function	
!$OMP	end	master	
...	
!$OMP	end	parallel

Performance	improvements	of  
hybrid	code	on	Intel	Xeon	Phi	
Knights	Landing	for	a	uniform	
240km	mesh	(10242	cells).  
 
Note	1:	With	optimised	compiler 
flags	for	the	Intel	KNL,	these 
performance	improvements  
are	smaller	(appr.	20%	“only”).	

Note	2:	regrouping	MPI	halo  
exchanges	gives	10-20%	speedup

North
American
refinement

Mesh generation

Lloyd’s method
(iterative)

using a user-supplied
density function

(next presentation)

Equatorial
refinement

Mesh generation

Lloyd’s method
(iterative)

using a user-supplied
density function

(next presentation)

Andes
refinement

Mesh generation

Lloyd’s method
(iterative)

using a user-supplied
density function

(next presentation)

NCAR%NCAS'MPAS'Tutorial,'19'September'2015,'Chester,'UK'

Fourth root of density function Resulting SCVT Normalized inverse mean
distance of cell centroid from

each of its neighboring centroids

Define ρ(x) as a function of the magnitude of the topography gradient,
for example:

Evidence from initial testing of the MPAS non-hydrostatic atmosphere code on
multi-resolution meshes on the Cartesian plane suggests that smoother
refinement (i.e., less abrupt transitions) produces better results

26'

AN ABSURD EXAMPLE OF MESH REFINEMENT

Topographic	mesh	refinement	

Density	function	proportional	to  
magnitude	of	topographic	
gradient	

left:	4th	root	of	density	function	
right:	resulting	SCVT	mesh	

step	towards	scale-	and  
climate-aware	meshes

To boldly go where no man has gone before …

Credits:	W.	Skamarock

