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Representing initial uncertainty by an

ensemble of states

Forecast uncertainty in weather models: \

? |Initial condition uncertainty RMS error
7 Model uncertainty

72 Boundary condition uncertainty

Represent initial forecast uncertainty by /\’
ensemble of states T _ \

Reliable forecast system: Spread should
grow like ensemble mean error fo

v Predictable states with small error
should have small spread

72  Unpredictable states with large error
should have large spread
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Underdispersivness of ensemble systems
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Predictability on weather timescales:The

broblem

Best estimates of initial condition uncertainty do not
introduce the necessary spread for reliable forecasts
on the short-, medium- and seasonal scales.

2 One source of model-error are uncertainties in the
physical parameterization schemes.

Our best estimate of parameterization uncertainties
does not yield sufficient spread.



Stochastic-kinetic energy backscatter
scheme (SKEBS

Rationale: A fraction of the subgrid-scale
energy is scattered upscale and acts as random
streamfunction and temperature forcing for
the resolved-scale flow (Shutts 2005, Berner
et. al 08,09,11,15). Here simplified version
with constant dissipation rate: can be
considered as additive noise with spatial and
temporal correlations.

— = Dx + Px+ dDx, stocn
ot |
Local tendency for Dynamical tendencies Physical tendencies
variable X =U,V,T => Resolved scales => Unresolved scales

Additive stochastic
perturbation tendencies
=> Unresolved scales




Stochastically perturbed tendency

scheme

Rationale: Especially as resolution increases,
the equilibrium assumption is no longer valid
and fluctuations of the subgrid-scale state
should be sampled (Buizza et al. 1999, Palmer
et al. 2009, Berner et al. 2015)

- = Dx+(r+1)Px
Local tendency for Dynamical tendencies Physical tendencies
variable X => Resolved scales => Unresolved scales

<> Perturbs accumulated U,V,T,Q tendencies
from physical parameterizations packages

<> Same pattern for all tendencies to minimize
introduction of imbalances




Multi-Physics combinations

Member | Land Surface | Microphysics | PBL | Cumulus | Longwave | Shortwave
1 Thermal Kessler YSU KF RRTM Dudhia
2 Thermal WSM6 MYJ KF RRTM CAM
3 Noah Kessler MYJ BM CAM Dudhia
4 Noah Lin MYJ Grell CAM CAM
5 Noah WSM6 YSU KF RRTM Dudhia
6 Noah WSM6 MYJ Grell RRTM Dudhia
7 RUC Lin YSU BM CAM Dudhia
8 RUC Eta MYJ KF RRTM Dudhia
9 RUC Eta YSU BM RRTM CAM
10 RUC Thompson | MYJ Grell CAM CAM

TABLE 2. Configuration of the multi-physics ensemble. Abbreviations are: BM — Betts-Miller;
CAM — Community Atmosphere Model; KF — Kain-Fritsch; MYJ — Mellor-Yamada-Janjic;
RRTM - Rapid Radiative Transfer Model; RUC — Rapid Update Cycle; WSM6 — WRF Single-
Moment Six-class; YSU — Yonsei University. For details on the physical parameterization

packages and references see Skamarock et al. (2008).
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Experiment setup

Weather Research and Forecast Model WRFV3.1.1 (or
WRFV3.3.1)

45km horizontal resolution and 41 vertical levels

10-member ensemble, integrated for 60h (short-range forecast)
15 dates in Nov-Dec 2009, 00Z and 12Z, amounting to 30 cycles
Limited area model: Contiguous United States (CONUS)
Boundary and initial conditions are taken from GEFS
Verification against observations (soundings and METAR)



Summary of experiments

Experiment Model-error representation Color Reference
CNTL Control Physics blue Hacker et al. (2011b)
SKEBS Stochastic kinetic-energy red Berner et al. (2011)

backscatter scheme

PARAM Multi-parameter cyan Hacker et al. (2011a)

SPPT Stochastically perturbed Palmer et al. (2009)

physics tendencies

PHYS4 Limited multi-physics (4 packages) Hacker et al.

PHYS10 Multi-physics (10 packages) dark green | Hacker et al.

(

(
Berner et al. (2011)

(

PHYS10_SKEBS Multi-physics (10 packages) + magenta Berner et al. (2011)
+ SKEBS
PHYS4_SKEBS_PARAM | Limited multi-physics + black Hacker et al. (2011b)

(4 packages) + PARAM + SKEBS




Spread and error near the surface

CNTL a) Zonal Wind U at 10m b) Temperature at 2m
PARAM _ 2.5] ' ' ' ' ] 3 /
SKEBS o Z/// .
PHYS10 o e — =] 0 __=2%"
3 - | 4’:’— -
PHYS10_SKEBS S 1.57 L em T L4 La®=" -z =
PHYS3_SKEBS_PARAM & 4| PO RS 1 ==t
&Y == = % --
05les” : : : e =" - - -
0 12 24 36 48 60 0 12 24 36 48 60
Forecast Lead time Forecast Lead time
Solid lines: rms Ensemble is underdispersive (= not enough
error of ensemble spread)
mean . _
2 Unreliable and over-confident
Dashed: spread A Depending on cost-loss ration potentially large

socio-economic impact (e.g. should roads be
salted)



Brierscore skill score near the surface
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Skill improvement from model-error

schemes

Brier Skill Score

—  CNTL
PARAM
—  SKEBS

10 ] PHYS10
i ii —— PHYS10_SKEBS
0 ————— PHYS3_SKEBS_PARAM

U700 T700 U10 T2

20

Raw

» Average over all forecast lead times
> Variables are U700, T700, U10, T2

Berner et al., et al 2015
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FIG. 2 Spread (dashed) and RMSE (solid) of four ensemble systems over
the East Asia domain for (a) geopotential height, (b) temperature and (c)
zonal wind. The different experiments are denoted by line colors: MP
(black), SPPT+MP (red), SKEB+MP (green), and SKEB+SPPT+MP (blue).

Li et al., 2017,
submitted




A priori vs a posteriorl

Model uncertainty
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A priori vs a posteriorl

Model uncertainty
added a posteriori:

AN Model

Process uncertainty
added a priori
during model
development:

T

Stochasticity

\-=

Forecast
uncertainty




Stochastic parameter perturbations (SPP)
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* Stochastically perturbs parameters in convection and PBL scheme
»  Grell convection scheme: Closure tendencies
»  MYNN PBL: Turbulent mixing length, subgrid cloud fraction,
thermal and moisture roughness lengths (perturbations
correlated and anti-correlated informed by expert knowledge)
* Results from RAP ensemble system @15km, currently tested in 3km

Jankov et al., 2017




Stochastically Perturbed Parameter

Scheme (SPP
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Potential of stochastic parameterizations

to reduce model error

Ball in double-
potential well
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Potential of stochastic parameterizations

to reduce model error

/
Potential

Stochastic Weaki noise Strong noise
parameterizations can | |
change the mean and
variance of a PDF

72 Impacts variability

72 Impacts mean bias

- -
Unimodal Multi-modal




Bias in U850 variability
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Skill improvement from debiasing
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» Skill improvement from debiasing larger than from introducing a model-error
scheme

» Ensembles with model-error schemes better than CNTL, even if ensembles are
debiased
» Model-error schemes can represent certain aspects of structural model error

Berner et al., et al 2015




Predictability on weather timescales: the

broblem

? There are other sources of model-error, e.g. the
absence of a -5/3 slope in the kinetic energy spectra.
These result in in leading to incorrect dispersion
between any two ensemble members (incorrect
error-growth characteristic).

72 As long as the model has insufficient error-growth, it
will be insufficient to represent model uncertainty
where it occurs.



Kinetic-energy spectra
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Limited vs unlimited predictability in
Lorenz 196¢
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FIG. 1. Error energy per unit wavenumber, K~ ' Z(K, t) for t = 0, 2 in steps of 0.1 for (a) SQG

turbulence and (b) 2DV turbulence. The heavy solid line indicates the base-state kinetic
energy spectra per unit wavenumber, K~ 'X(K), which has a —5/3 slope for SQG and a —3

slope for 2DV.

Rotunno and Snyder, 2008

see also: Tribbia and Baumhefner 2004




Forecast error spectra

Power Spectrum
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Berner et al. 2009




Kinetic-energy spectra

Kinetic energy (m?/s?)
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STOCHASTIC PARAMETERIZATION

Toward a New View of Weather and Climate Models

JuDITH BERNER, ULRICH ACHATZ, LAURIANE BATTE, LisA BENGTSSON, ALVARO DE LA CAMARA,
HANNAH M. CHRISTENSEN, MATTEO CoLANGELI, DANIELLE R. B. CoLeMAN, DAAN CROMMELIN,
STAMEN |. DoLAPTCHIEV, CHRISTIAN L. E. FRANZKE, PETRA FRIEDERICHS, PETER IMKELLER, HEIKKI JARVINEN,
STEPHAN JURICKE, VAssILI KiTsios, FRANGOIS LOTT, VALERIO LucARINI, SALIL MAHAJAN, TiMOTHY N. PALMER,
CeciLe PENLAND, MIRJANA SAKRADZIJA, JIN-SONG VON STORCH, ANTJE WEISHEIMER,

MicHAEL WENIGER, PauL D. WiLLiAMs, AND JuN-IcHI YanO

Stochastic parameterizations—empirically derived or based on rigorous
mathematical and statistical concepts—have great potential to increase the
predictive capability of next-generation weather and climate models.
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