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Ensemble verification

* Many concepts are important for ensemble
verification

 The literature is rich with ideas and metrics

— Can only scratch the surface in a 30 minute talk

* I'll discuss some aspects of ensemble verification
that can be confusing



Ensemble predictions

e Each individual member of an ensemble forecast
is a deterministic forecast

» Tempting to verify each member individually
with deterministic approaches
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Value of ensembles

* Ensemble value comes primarily from
probabilities

— Ensembles should be verified probabilistically

 Trying to find the “best” deterministic forecast
from an ensemble is not a great idea

— Ignores probabilistic value from ensembles

* Ensemble mean and probability matched mean
are sometimes useful



Probabilistic forecasts are best

1 (a) 0.25 mm/hr I 1 (b) 0.5 mm/hr I 1 (c) 1.0 mm/hr

0.80 - 0.80 - 0.80 - -
0.60 0.60 0.60
[7)]
7} g 1 1
L 0.40 - 0.40 0.40
0.20 1 - 0.20 A L 020 - R
0.00 -+ T T T T T T 0.00 I : I I T T T 0.00 T T T T T T T
5 25 50 75 100 125 150 5 25 50 75 100 125 150 5 25 50 75 100 125 150
1 d) 5.0 hr | 1 e) 10.0 mm/hr | | f) 20.0 mm/hr |
0.80 - (diS0MMMIDE ||, s (e) L 0.80 - 0 i
0.60 0.60 - L 0,60 - B
()]
%) A 1 i
L 0.40 - 0.40 - 0.40
020 1 0.20 L/ 0.20 -
000 +—+—--7+—-7--+-—-7v-—-++4+ o0 tpr - pn o 1 o0 b o2
5 256 50 75 100 125 150 5 25 50 75 100 125 150 5 25 50 75 100 125 150
Radius of Influence (km) Radius of Influence (km) Radius of Influence (km)
Ensemble members PMM
EnKF mean ICs (<x,>) EM

10-member NEP
From Schwartz et al. (2014); Weather and Forecasting



Deterministic vs. probabilistic forecasts

 Deterministic forecasts:
— Only 0% or 100% probabilities

* Probabilistic forecasts:

— Convey uncertainty on a continuum between 0% and
100%

 Probabilistic forecast quality cannot be verified
with a single event



Reliability
* Reliability

— Given a probabilistic forecast of an event, how often
does the event actually occur?

* An important part of an ensemble system

— Post-processing can improve ensembles that have
poor reliability



Observed relative frequency
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Observed relative frequency
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Observed relative frequency
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Brier score (BS)

 The Brier score (BS) is commonly used to verify
probabilistic forecasts:

BS—ii( —0)2
N = P; —0;

» p.: Probabilistic forecast at point i

* 0;: Observations at i. o, =1 if the event occurred
at i and o, = o otherwise



Brier score decomposition (Murphy 1973)

* Brier score can be decomposed into 3 terms;

| 1 &
BS = —>n —0) — —>n(o —0)
NZ (p,—0,) NZ (0, —0)

reliability resolution

o(l-0)
uncertainty

* Uncertainty term depends only on observations

— Therefore, BS should not be used to compare
forecasts from different samples

— Use a Brier skill score (BSS) to circumvent this issue
— BSS compares a BS to a reference BS



Rank histogram

* Examines ensemble spread
— Do observations fall within range of the ensemble?

* Sort ensemble members in increasing order and
determine where the observation lies with
respect to the ensemble members

il
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Fraction

Rank histogram

Examines ensemble spread

— Do observations fall within range of the ensemble?
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Rank histogram
 Should consider observation errors when

producing rank histograms

— Observation error = measurement error +
representativeness error

— Add noise to each
ensemble member

e Hamill (2001) also
discusses issues
with rank histogram
interpretation
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“It’s a beautiful day in the _
neighborhood”

» High-res models are inaccurate at the grid scale

— Verification methods requiring forecast and observed
events match at the grid scale are inappropriate

* Instead, use a “neighborhood approach”

— Specify a “neighborhood length scale” that defines
the tolerance for error

— Can use either square or circular geometry



Neighborhood approach option 1

* Pick a threshold
* The threshold has

been met or exceeded
in the shaded boxes

 Can be viewed as a

spatial average
(i.e., a smoother)

Hypothetical model output

P=28/21 =38%




Neighborhood approach applied to

ensembles option 1

* Apply neighborhood approach as described on previous
slide to each ensemble member separately

— For each member, get a value between o and 1

— Average all
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Neighborhood approach option 2

* Pick a threshold
* The threshold has

been met or exceeded
in the shaded boxes

* If the threshold is

met or exceeded
anywhere within the
neighborhood, give
the point a value of 1

Hypothetical model output

P=100%




Neighborhood approach applied to

ensembles option 2

 If at a point, an event occurs anywhere within the
neighborhood, give the point a value of 1, otherwise o

— Do this for all ensemble members individually

— Average across the ensemble to get a probability
between o and 1
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Schematic of NMEP
* From Hardy et al. (2016)
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* Do this for N members, then average the fields



Interpretations
* NEP

— “Probability of an event occurring at grid point i’
(considering the neighborhood length scale)

— Grid-scale probability
— Spatial scale of event: the grid-scale

* NMEP

— “Probability of an event occurring within x km of i
— Non-grid-scale probability
— Spatial scale of event: larger than grid-scale (x km)



Further interpretations
« NEP

— Neighborhood length scale is a smoothing scale (r)
— Smooths probabilities

— Discretized in intervals of 1/N*N, (effectively

continuous) N: ensemble size
N,: number of points in
' h
e NMEP the neighborhood

— Neighborhood length scale is a searching scale (x)
— Discretized in intervals of 1/N

See Schwartz and Sobash
(2017) for more on NEPs and

NMEPs




NEPs for a single member

* NEPs of 1-h precipitation = 1.0 mm/h

r=0 km (grid scale)

r=100 km
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NEPs for a 10-member ensemble

* NEPs of 1-h precipitation = 1.0 mm/h

r=0 km (grid scale)
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NMEPs for a single member

* NMEPs of 1-h precipitation = 1.0 mm/h

Probability (%)



NMEPs for a 10-member ensemble

* NMEPs of 1-h precipitation = 1.0 mm/h

x =100 km
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10-member ensemble NEPs and NMEPs
* NEPs/NMEPs of 1-h precipitation = 1.0 mm/h

r=x

= 0 km (grid scale)
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Take-home messages

* Verify ensembles probabilistically

— Do not treat ensembles as a collection of
deterministic forecasts!

 Be careful dealing with observations in the Brier
score and rank histogram

* If using a neighborhood approach, explicitly
state your methods and interpretations of
resulting probabilistic fields












Why ensemble forecasts are desirable

Quantification of uncertainty
— Naturally produces probabilities!
— Allows forecasters to forecast their “true beliefs”

— Allows users to make decisions based on expected
value and cost-loss scenarios

Errors of different members cancel when
combining forecasts across members

— Forecasts combining information across all members
are better than single deterministic forecasts



Resolution

* Resolution refers to the ability of the ensemble
to distinguish between various events

 Unlike reliability, resolution cannot be easily

fixed!

— Accordingly, some people believe resolution is the
most important aspect of an ensemble



Attributes diagram

* Synthesize information about reliability,
resolution, and Brier skill score

— See Wilks (1995)
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Attributes diagram

* Synthesize information about reliability,
resolution, and Brier skill score

— See Wilks (1995) 1
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