

Ensemble forecast verification

Craig Schwartz The National Center for Atmospheric Research

schwartz@ucar.edu

NCAR is sponsored by the National Science Foundation

Ensemble verification

- Many concepts are important for ensemble verification
- The literature is rich with ideas and metrics
 Can only scratch the surface in a 30 minute talk
- I'll discuss some aspects of ensemble verification that can be confusing

Ensemble predictions

• Each individual member of an ensemble forecast is a deterministic forecast

• Tempting to verify each member individually with deterministic approaches

Value of ensembles

- Ensemble value comes primarily from probabilities
 - Ensembles should be verified probabilistically
- Trying to find the "best" deterministic forecast from an ensemble is not a great idea

– Ignores probabilistic value from ensembles

• Ensemble mean and probability matched mean are sometimes useful

Probabilistic forecasts are best

From Schwartz et al. (2014); Weather and Forecasting

Deterministic vs. probabilistic forecasts

- Deterministic forecasts:
 - Only o% or 100% probabilities
- Probabilistic forecasts:
 - Convey uncertainty on a *continuum* between 0% and 100%
- Probabilistic forecast quality cannot be verified with a single event

- Reliability
 - Given a probabilistic forecast of an event, how often does the event actually occur?
- An important part of an ensemble system

 Post-processing can improve ensembles that have poor reliability

Brier score (BS)

• The Brier score (BS) is commonly used to verify probabilistic forecasts:

$$BS = \frac{1}{N} \sum_{i=1}^{N} (p_i - o_i)^2$$

- *p_i*: Probabilistic forecast at point *i*
- *o_i*: Observations at *i*. *o_i* = 1 if the event occurred at *i* and *o_i* = 0 otherwise

Brier score decomposition (Murphy 1973)

• Brier score can be decomposed into 3 terms:

$$BS = \frac{1}{N} \sum_{k=1}^{K} n_k (p_k - \overline{o}_k)^2 - \frac{1}{N} \sum_{k=1}^{K} n_k (\overline{o}_k - \overline{o})^2 + \overline{o} (1 - \overline{o})$$

reliability resolution uncertainty

- Uncertainty term depends only on *observations*
 - Therefore, BS should not be used to compare forecasts from different samples
 - Use a Brier skill score (BSS) to circumvent this issue
 - BSS compares a BS to a reference BS

Rank histogram

- Examines ensemble spread
 Do observations fall within range of the ensemble?
- Sort ensemble members in increasing order and determine where the observation lies with respect to the ensemble members

Rank histogram

Examines ensemble spread
 Do observations fall within range of the ensemble?

Rank histogram

- Should consider observation errors when producing rank histograms
 - Observation error = measurement error +

representativeness error

- Add noise to each ensemble member
- Hamill (2001) also discusses issues with rank histogram interpretation

"It's a beautiful day in the neighborhood"

- High-res models are inaccurate at the grid scale

 Verification methods requiring forecast and observed events match at the grid scale are inappropriate
- Instead, use a "neighborhood approach"
 - Specify a "neighborhood length scale" that defines the tolerance for error
 - Can use either square or circular geometry

Neighborhood approach option 1

- Pick a threshold
- The threshold has been met or exceeded in the shaded boxes
- Can be viewed as a spatial average (i.e., a *smoother*)

Hypothetical model output

P = 8/21 = 38%

Neighborhood approach applied to ensembles option 1

- Apply neighborhood approach as described on previous slide to each ensemble member separately
 - For each member, get a value between o and 1
 - Average all probabilistic fields

Neighborhood approach option 2

- Pick a threshold
- The threshold has been met or exceeded in the shaded boxes
- If the threshold is met or exceeded *anywhere* within the neighborhood, give the point a value of 1

Hypothetical model output

Neighborhood approach applied to ensembles option 2

- If, at a point, an event occurs anywhere within the neighborhood, give the point a value of 1, otherwise o
 - Do this for all ensemble members individually
 - Average across the ensemble to get a probability
 between o and 1

Schematic of NMEP

• From Hardy et al. (2016)

Schematic for ONE member

4	5	6	0	0	
1	3	10	8	3	
0	0	2	7	2	
1	1	3	9	1	
0	0	0	4	4	

Binary grid for those cells

that exceeded 4"/30-hrs

30-hr Cumulative Precip Grid (inches)

1	1	1	0	0
0	0	1	1	0
0	0	0	1	0
0	0	0	1	0
0	0	0	1	1

Surrounding cells (within radius) exceed threshold
 1
 1
 0
 0

 0
 0
 1
 1
 0

 0
 0
 1
 1
 0

 0
 0
 0
 1
 0

 0
 0
 0
 1
 0

 0
 0
 0
 1
 1

 0
 0
 0
 1
 1

Surrounding cells (within radius) DO NOT exceed threshold

	1	1	1	1	1
	1	1	1	1	1
(0	1	1	1	1
(0	0	1	1	1
(0	0	1	1	1

 1
 1
 0
 0

 0
 0
 1
 1
 0

 0
 0
 0
 1
 0

 0
 0
 0
 1
 0

 0
 0
 0
 1
 0

 0
 0
 0
 1
 1

Surrounding cells (within radius) DO NOT exceed threshold

• Do this for *N* members, then average the fields

Interpretations

- NEP
 - "Probability of an event occurring *at* grid point *i*" (considering the neighborhood length scale)
 - Grid-scale probability
 - Spatial scale of event: the grid-scale
- NMEP
 - "Probability of an event occurring *within x* km of *i*"
 - Non-grid-scale probability
 - Spatial scale of event: larger than grid-scale (*x* km)

Further interpretations

- NEP
 - Neighborhood length scale is a *smoothing* scale (*r*)
 - Smooths probabilities
 - Discretized in intervals of $1/N^*N_b$ (effectively continuous)
 - N: ensemble size N_b: number of points in the neighborhood

- NMEP
 - Neighborhood length scale is a *searching* scale (x)
 - Discretized in intervals of 1/N

See Schwartz and Sobash (2017) for more on NEPs and NMEPs

• NEPs of *µ*-h precipitation ≥ 1.0 mm/h

NMEPs for a single member

• NMEPs of 1-h precipitation \geq 1.0 mm/h

Probability (%)

• NMEPs of 1-h precipitation ≥ 1.0 mm/h

Some references

Hacker, J., and Coauthors, 2011: The U.S. Air Force Weather Agency's mesoscale ensemble: Scientific description and performance results. *Tellus*, **63A**, 625–641, doi:10.1111/j.1600-0870.2010.00497.x.

Hamill, T. M., 2001: Interpretation of rank histograms for verifying ensemble forecasts. *Mon. Wea. Rev.*, **129**, 550–560, doi:10.1175/1520-0493(2001)129<0550:IORHFV>2.0.CO;2.

Hardy, J., J. J. Gourley, P.-E. Kirstetter, Y. Hong, F. Kong, and Z. L. Flamig, 2016: A method for probabilistic flash flood forecasting. *Journal of Hydro*logy, **541**, 480–494, doi:10.1016/j.jhydrol.2016.04.007.

Murphy, A. H., 1973: A new vector partition of the probability score. *J. Appl. Meteor.*, **12**, 595–600, doi: 10.1175/1520-0450(1973)012<0595:ANVPOT>2.0.CO;2.

Murphy, A. H., 1993: What is a good forecast? An essay on the nature of goodness in weather forecasting. *Wea. Forecasting*, **8**, 281–293, doi:10.1175/1520-0434(1993)008<0281:WIAGFA>2.0.CO;2.

Schwartz, C. S., and Coauthors, 2010: Toward improved convection-allowing ensembles: Model physics sensitivities and optimizing probabilistic guidance with small ensemble membership. *Wea. Forecasting*, **25**, 263–280, doi:10.1175/2009WAF2222267.1.

Schwartz, C. S., G. S. Romine, K. R. Smith, and M. L. Weisman, 2014: Characterizing and optimizing precipitation forecasts from a convection-permitting ensemble initialized by a mesoscale ensemble Kalman filter. *Wea. Forecasting*, **29**, 1295–1318, doi:10.1175/WAF-D-13-00145.1.

References

Schwartz, C. S., and R. A. Sobash, 2017: Generating probabilistic forecasts from convection-allowing ensembles using neighborhood approaches: A review and recommendations. *Mon. Wea. Rev.*, In press, doi: 10.1175/MWR-D-16-0400.1.

Wilks, D., 1995: Statistical Methods in the Atmospheric Sciences. Academic Press, 464pp.

A useful powerpoint: http://www.atmos.umd.edu/~ekalnay/syllabi/AOSC630/ensemble101.pdf

Take-home messages

- Verify ensembles probabilistically
 - Do not treat ensembles as a collection of deterministic forecasts!
- Be careful dealing with observations in the Brier score and rank histogram

 If using a neighborhood approach, explicitly state your methods and interpretations of resulting probabilistic fields

Why ensemble forecasts are desirable

- Quantification of uncertainty
 - Naturally produces probabilities!
 - Allows forecasters to forecast their "true beliefs"
 - Allows users to make decisions based on expected value and cost-loss scenarios
- Errors of different members cancel when combining forecasts across members
 - Forecasts combining information across all members are better than single deterministic forecasts

Resolution

- Resolution refers to the ability of the ensemble to distinguish between various events
- Unlike reliability, resolution cannot be easily fixed!
 - Accordingly, some people believe resolution is the most important aspect of an ensemble

Attributes diagram

• Synthesize information about reliability, resolution, and Brier skill score

*

Attributes diagram

- Synthesize information about reliability, resolution, and Brier skill score
 - See Wilks (1995)

*

