

The Model for Prediction Across Scales Version 7.0 release and future development directions.

MPAS-A: WRF numerics and physics with a height coordinate on a centroidal Voronoi mesh

MMM-MPAS team: Dave Ahijevych, Ming Chen, Miles Curry, Michael Duda, Laura Fowler, SoYoung Ha, Jihyeon Jang, Joe Klemp, Sang-Hun Park (YSU), Bill Skamarock, Wei Wang, May Wong

Centroidal Voronoi Meshes

The horizontal mesh is unstructured

MPAS uses a C-grid staggering

Х

MPAS-Atmosphere Version 7.0 - 7 June 2019

MPAS does not follow a yearly release schedule.

Releases in new functionality increments the integer version number.

Bugfixes increments the integer to the right of the decimal point.

Today:

- Physics updates
- Regional capability
- Ongoing development: MPAS in CESM
- Ongoing development: MPAS and GPUs
- Ongoing development: deep atmosphere

MPAS-Atmosphere Version 7 physics

As in MPAS-A Version 6, we have two physics suites:

mesoscale-reference suite

convection-permitting suite

Parameterization	Scheme	Parameterization Scheme	
Convection	New Tiedtke	Convection	Grell-Freitas
Microphysics	WSM6	Microphysics	Thompson (non-aerosol aware
Land surface	Noah	Land surface	Noah
Boundary layer	YSU	Boundary layer	MYNN
Surface layer	Monin-Obukhov	Surface layer	MYNN
Radiation, LW	RRTMG	Radiation, LW	RRTMG
Radiation, SW	RRTMG	Radiation, SW	RRTMG
Cloud fraction for radiation	Xu-Randall	Cloud fraction for radiation Xu-Randall	
Gravity wave drag by orography	YSU	Gravity wave drag by orography	YSU

MPAS-Atmosphere Version 7 physics

From the MPAS V7 User's Guide

Table 6.3: Possible options for individual physics parameterizations. Namelist variables should be added to the & physics namelist record.

Parameterization	Namelist variable	Possible options	Details
Convection	config_convection_scheme	cu_tiedtke	Tiedtke (WRF 3.8.1)
		cu_ntiedtke	New Tiedtke (WRF 4.0.3)
		cu_grell_freitas	Modified version of scale-aware Grell-Freitas (WRF 3.6.
		cu_kain_fritsch	Kain-Fritsch (WRF 3.2.1)
Microphysics	config_microp_scheme	mp_wsm6	WSM 6-class (WRF 4.1)
		$mp_thompson$	Thompson non-aerosol aware (WRF 3.8.1)
		mp_kessler	Kessler
Land surface	config_lsm_scheme	noah	Noah (WRF 4.0.3)
Boundary layer	config_pbl_scheme	bl_ysu	YSU (WRF 4.0.3)
		bl_mynn	MYNN (WRF 3.6.1)
Surface layer	config_sfclayer_scheme	sf_monin_obukhov	Monin-Obukhov (WRF 4.0.3)
		sf_mynn	MYNN (WRF 3.6.1)
Radiation, LW	$config_radt_lw_scheme$	rrtmg_lw	RRTMG (WRF 3.8.1)
		cam_lw	CAM (WRF 3.3.1)
Radiation, SW	$config_radt_sw_scheme$	rrtmg_sw	RRTMG (WRF 3.8.1)
		cam_sw	
Cloud fraction for radiation	$config_radt_cld_scheme$	cld_fraction	Xu and Randall (1996)
		cld_incidence	$0/1$ cloud fraction depending on $q_c + q_i$
Gravity wave drag by orography	config_gwdo_scheme	bl_ysu_gwdo	YSU (WRF 4.0.3)

Regional MPAS-Atmosphere

Regional MPAS can be driven by other MPAS global or regional simulations, by GFS, by CFSR, IFS forecasts, etc.

Horizontal meshes are created by cutting out a region from a global mesh.

Same parallelization approach as in global MPAS

Similar lateral boundary formulation as in WRF

See Ming Chen's talk (10.3) Thursday afternoon presenting CONUS forecast comparisons between regional MPAS and WRF

Regional MPAS-Atmosphere meshes

- 1. Take any existing (global) mesh, rotate the refinement as needed
- 2. Identify a region of interest

3. Let the regional domain consist of all cells whose generating point (center, roughly) lies within the region

Regional MPAS-Atmosphere meshes

4. Build layers of "relaxation zone" cells (the default is 5)

5. Add two layers of "specified zone" cells

6. Cull any remaining cells and reindex cells/edges/vertices to a contiguous range of indices

Regional MPAS-Atmosphere meshes

Regional MPAS-Atmosphere meshes

Partitioning limited-area meshes works the same as for global meshes

Partitioning of a regional MPAS mesh by Metis into 144 partitions.

The connectivity graph of cells near the south-west of Indiana.

MPAS 15km regional (NCEP FNL LBCs)

Lowest-model-level zonal wind

2017-04-26_00:00:00

Ongoing Development

MPAS-Atmosphere in CESM/CAM

- A clean, supportable implementation of MPAS-A into CESM is being constructed. Builds of MPAS-A in CESM/CAM pull MPAS-A directly from the MPAS development/release github repository.
- The new MPAS-Atmosphere port to CESM is part of the SIMA project to unify atmospheric modeling at NCAR (weather, climate and geospace). See Chris Davis' presentation at the Thursday afternoon wrap-up discussion.
- MPAS-Atmosphere is adopting the Community Physics Framework (CPF) being developed to access WRF and CESM/CAM physics, and MICM chemistry. See Dom Heinzeller's talk on the CCPP/CPF (10.6) on Thursday afternoon.
- Regional MPAS-A capabilities should be available in CESM/CAM.
- We plan to release MPAS/CAM/CESM when it is NWP capable.

Ongoing Development

GPU/accelerator capabilities in MPAS-Atmosphere

Development of MPAS-A using GPUs through OpenACC directives continues.

Participating organizations: The Weather Company, IBM, NCAR, Univ. Wyoming, NVIDIA

Questions being addressed in this development:

- Can we achieve significant performance enhancement on GPUs using OpenACC?
- Can we maintain and evolve a single-source code (CPU/GPU) in our development and for release and support to the community?

We have made major progress - for further information see:

(3.2) MPAS on GPUs - Supreeth Suresh

(3.4) Challenges and techniques to port MPAS on to GPUs.

Raghuraj Kumar, NVIDIA, S. Suresh, NCAR

Ongoing Development

Deep atmosphere equations in MPAS

MPAS currently solves fluid-flow equations that use the shallow atmosphere approximation

Deep atmosphere

- Geometric effects: $\Delta x = f(r)$
- Full Coriolis terms
- Variable gravity
- In(p) formulation for pressure gradients

Geospace

- General state equation
- Solver accommodation for large physical viscosities

Home » HOME

MPAS TUTORIAL

MODEL FOR PREDICTION ACROSS SCALES – ATMOSPHERE (MPAS-A) TUTORIAL

9-11 September, 2019 NCAR Foothills Lab, Boulder, CO

Will cover both global and regional MPAS-Atmosphere

Registration is now open. https://www.mmm.ucar.edu/mpas-tutorial