Regional-MPAS and WRF: Preliminary Comparison and Evaluation

Ming Chen, May Wong, Bill Skamarock, Wei Wang

Weather Modeling and Research Section Mesoscale & Microscale Meteorology Laboratory National Center for Atmospheric Research

This material is based upon work sponsored by the National Center for Atmospheric Research, which is a major facility sponsored by the National Science Foundation under Cooperative Agreement No. 1852977

Regional-MPAS and WRF: issues we are concerned

- MPAS and WRF physics unification
- Different grid structures
 - Surface information: vegetation fraction, albedo, terrain, landuse, etc.
 - Specification of vertical levels
- Experiments
 - GFS analysis/forecast for initial condition and lateral boundary forcing
 - 72-hour runs over Feb 1-March 30 and April 20-June 15 2017, initialized at 00 UTC every three days;
- Verification and comparison
 - CMORPH, MRMS and Stage IV precipitation
 - GFS analysis and in-situ observations

Regional-MPAS and WRF: Physics Unification

• Unified physics configuration in MPAS and WRF

	MPAS	WRF
Physics suite	Mesoscale_reference	Tropical
Ozone	config_o3climatology = True	O3input = 2
effective radii computed in microphysics	config_microp_re = True	use_mp_re = 1
Aerosol	No aerosol is considered	aer_opt = 0
Use snow albedo	sfc_snowalbedo = true	rdmaxalb=true
Sea ice	fractional_seaice =1	fractional_seaice = 1
Gravity wave drag	config_gwdo_scheme = off	gwd_opt = 0

Model domain, static information, etc.

WRF and MPAS: domain, landuse type

WRF-MPAS Vertical Levels

Surface air temperature: February 1 – March 30 2017

Verification of monthly WRF simulations

Precipitation Forecasts:

24-hr accumulative precipitation simulated by MPAS and WRF

WRF: Precipitaion Forecast (Feb 1 - Mar 30 2017)

Precipitation Observations (CMORPH and STAGE IV)

CMORPH precipitation on MPAS grid (mm/day) CMORPH (corresponding to 0-24hr FCST) CMORPH (corresponding to 24-48hr FCST) CMORPH (corresponding to 48-72hr FCST) The second secon

0.1	0.2	0.4	0.8	1.6	2.5	3.5	5	10	15	25

0.1	0.2	0.4	0.8	1.6	2.5	3.5	5	10	15	25

0.1	0.2	0.4	0.8	1.6	2.5	3.5	5	10	15	25

Stage IV precipittaion (Feb 1 - Mar 30 2017)

Domain-averaged precipitation

7.0 Domain-average precipitation (mm/day) Domain-averaged precipitation (mm/day) OBS MPAS 6.0 NRF 5.0 4.0 3.0 2.0 1.0 -----WRF 20 April – 15 June 2017 1 February – 30 March 2017 ---MPAS MRMS 0.0 0 12 24 36 48 60 72 12 24 36 48 60 72 0 0 FCST hour FCST hour

Domain-averaged precipitation (mm/day)

Skill scores for precipitation forecast

A single case study: the winter storm on Feb 22-25, 2017

0.1 0.2 0.4 0.8 1.6 2.5 3.5 5 10 15 25

0.1 0.2 0.4 0.8 1.6 2.5 3.5 5 10 15 25

0.1 0.2 0.4 0.8 1.6 2.5 3.5 5 10 15 25

DOMAIN-AVERAGE 3-HOUR PRECIPITATION (mm)

A single case study: winter storm on Feb 22-25, 2017

Geopotential height and winds at 500 hPa (12UTC 24 February 2017)

A single case study: severe hailstorm on May 17-20, 2017

24-hr accumulative precipitation simulated by MPAS and WRF

Domain-averaged hourly precipitation

60°W

60°W

60⁰W

10-3

A single case study: severe hailstorm on May 17-20, 2017

Geopotential height and winds at 500 hPa

Vertical distribution of BIAS: February 1 – March 30

Vertical distribution of BIAS: February 1 – March 30

Summary

- Statistically, regional MPAS and WRF simulations agree very well
- Case studies of winter and spring storms indicate the two model simulations are consistent, especially in the winter.
- Both models can well reproduce light to moderate precipitation. But 15-km is not fine enough to capture the location/shape of heavy precipitation ((>30mm/24hr), --- we will look at results of 3km runs.
- Both WRF and MPAS show cold and dry deviations from GFS analysis throughout the troposphere.

