



# Implementation of an implicit-explicit vertical advection scheme in WRF-ARW for CAM NWP

Louis J. Wicker NOAA National Severe Storms Lab Louis.Wicker@noaa.gov





The Best Way to Predict the Future... Is To Impose Your Mediocre Technology On Everyone Else FreakingNewscom



### Outline



- Why is this important?
- Current approaches to improve efficiency
- Shchepetkin's solution

- Simple examples
- 27 April 2011 tests
- Timings and conclusions



### Motivation





# Motivation



CAM model model resolution  $CFL_{h} = \frac{u\Delta t}{\Delta x} < 1$   $W \approx U$   $CFL_{z} = \frac{w\Delta t}{\Delta z} \sim 1$ 

time step now controlled by vertical CFL from convective updrafts



# Current Status

- Current CAMs time steps are limited by W-CFL
  - e.g., HRRR config: dx = dy = 3km, 60 levels
  - Anisotropic grids aspect ratios dx/dz > 5
  - Supercells: max W's ~40 m/s [yes, even at 3 km res!]
    - a few grid points **limit** the time step for entire domain!
  - For operational NWP even small speedups (5-10%) can be important!
- Strategies currently available to increase time step in WRF
  - W-Filter: Rayleigh damping the vertical velocity when w-cfl > 1.2
  - W-Filter: Limit the latent heat release term from physics (MP\_TEND)







### Test Case



- 00Z 27 April 2011: Supercell tornado outbreak in southern US
- Extremely strong convection good test case!!
- Stability test: 24 hour integration
  - ~02Z: Strong convection in N and E Texas and LA
  - After 18Z: Large number of supercells develop in MS and move into N AL.
- Model configuration
  - 1601x1201 (3 km res) with 51 vertical levels
  - Thompson microphysics (non-aerosol aware)
  - MYNN
  - Initialized from NAM





# Impact of Filters...



- Test 27 April 2011 case using a HRRR-like configurations.
- No vertical velocity filters (no w\_damp, no mp\_tend\_lim)
  - Maximum stable time step:  $dt_{max} = 15$  sec
  - Max W > 45 m/s
- Both vertical velocity filters on: (w\_damp on, mp\_tend\_lim ~ 0.07)
  - Maximum stable time step: dt<sub>max</sub> = 20 sec
  - Max W < 30 m/s, reduction in most intense storms by ~40%</li>
- Vertical transport of water substance and latent heat are also reduced!
- This approach is currently used in HRRRv3 (but hopefully not in v4!)



#### 27 April 03Z 1 KM REF





Jun 11, 2019



#### 27 April 03Z 1 hour Max Updraft







#### Spring Exp (2017) CAM Updraft Statistics



#### Max Column W for hours 18-26 (21 days)



**Updraft Percentiles** 

Figure courtesy of C. Potvin





Shchepetkin 2015: An Adaptive, Courant-number-dependent Implicit Scheme for Vertical Advection in Oceanic Modeling. Ocean Modeling **91**, pp. 38-69.

- CAM time-step limitation due to local W-CFL similar in ROM ocean model simulations when horizontal resolution increases
- Large and transient W's in small regions (oceanic fronts) limited the size of time step for entire ROM's simulation (sound familiar?)
- His solution:
  - Break the vertical velocity into 2 fields based on the vertical courant number
  - Almost all of the transport will use the standard **Explicit** scheme, except...
  - where W-CFL > 1, do part of transport Explicitly, and the rest IMPLICITLY



# IEVA Algorithm

TIONAL STORMS

- Compute local vertical courant number at each grid point
- Choose critical courant number from linear theory
  - for RK3 5th order w-advection: w\_cr<sub>critical</sub> = 1.1
- Divide w-field into explicit and "implicit" pieces
  - the labels refer the actual transport (explicit or implicit).
  - w<sub>ex</sub>(i,k,j) = dz/dt \* Min( w\_cr(i,k,j), w\_cr<sub>critical</sub> )
  - $w_{im}(i,k,j) = w(i,k,j) w_{ex}(i,k,j)$
- The "normal" RK3 algorithm is used with the  $w_{ex}$  field.
- An Euler-backward (implicit) with upwind fluxes uses the w<sub>im</sub> field to do the implicit piece of the transport



# Simple Advection Tests





Oct 12, 2018



RK3

# Translating Downburst with $\frac{\Delta x}{\Delta z} = 4$







#### **RK3-IEVA**





UNSTABLE

**UNSTABLE** 





June 11, 2019



#### 27 April 03Z 1 KM REF







#### 27 April 03Z 1 hour Max Updraft







#### "HRRRe" vs HRRRe + IEVA in 2019 Spring Forecast Experiment



#### Max Column W for 36 hours (05/20/19)

Filtered



**NO Filters** 



Jun 11, 2019

![](_page_17_Picture_0.jpeg)

![](_page_17_Picture_1.jpeg)

![](_page_17_Picture_2.jpeg)

- Timings from 3 hour runs 00Z-03Z 27 April
  - I/O omitted
  - 960 cores
  - 3 runs for each configuration on Cray XC
  - NSSL 2-moment microphysics

| Time step<br>(dt in secs)    | HRRR<br>20 | IEVA<br>20           | IEVA<br>24                             |
|------------------------------|------------|----------------------|----------------------------------------|
| Run1                         | 519        | 544                  | 456                                    |
| Run2                         | 522        | 543                  | 454                                    |
| Run3                         | 519        | 543                  | 455                                    |
| Avg                          | 520        | 543                  | 455                                    |
| Speed<br>relative to<br>HRRR | 1.0        | 1.04                 | 0.88                                   |
| Notes                        |            | Overhead<br>is<br>4% | Max<br>Theoretical<br>Speedup<br>0.833 |

![](_page_18_Picture_0.jpeg)

![](_page_18_Picture_1.jpeg)

![](_page_18_Picture_2.jpeg)

- Adapted the Shchepetkin (2015) adaptive implicit-explicit vertical advection scheme into WRF Runge-Kutta framework (WRFv 3.8, 3.9, 4.1)
- IEVA can be used to remove existing w-filters in WRF, permitting more realistic vertical velocities while using a larger time step.
- IEVA can be shown to <u>consistent</u> and <u>conservative</u> for transport
- For NWP, testing shows time step can be increased by 20-25%
  - **Speed up** for run relative to current HRRR config is **10-15%**
  - Extra cost comes from solving a tridiagonal system for each column/state variable
  - Implementation could be made to be somewhat faster
  - Physics schemes may have to be "hardened" to accurately use larger time steps
    - Ted Mansell had to improve NSSL 2-mom ice interactions not to over deplete for larger time steps (run with dt = 30 sec for some limited domain test runs)
- IEVA will be (hopefully) used in the 2020 HRRRv4 implementation.

![](_page_19_Picture_0.jpeg)

### Questions?

![](_page_19_Picture_2.jpeg)

![](_page_19_Picture_3.jpeg)

![](_page_19_Picture_4.jpeg)

![](_page_19_Picture_5.jpeg)

![](_page_19_Picture_6.jpeg)

#### <u>Special Thanks</u> Bill Skamarock Corey Potvin Ted Mansell

![](_page_20_Picture_0.jpeg)

![](_page_20_Picture_1.jpeg)

![](_page_21_Picture_0.jpeg)

### Motivation

![](_page_21_Picture_2.jpeg)

![](_page_21_Picture_3.jpeg)

![](_page_21_Figure_4.jpeg)

![](_page_22_Picture_0.jpeg)

### Motivation

![](_page_22_Picture_2.jpeg)

High-Res model resolution

$$CFL_{h} = \frac{u\Delta t}{\Delta x} \sim 1$$
$$W \ge U$$
$$CFL_{z} = \frac{w\Delta t}{\Delta z} >> 1$$

time step now controlled by vertical CFL from convective updrafts

![](_page_22_Figure_6.jpeg)

### 1D Advection

![](_page_23_Picture_1.jpeg)

![](_page_23_Figure_2.jpeg)

### 1D Advection

![](_page_24_Picture_1.jpeg)

![](_page_24_Figure_2.jpeg)

![](_page_25_Picture_0.jpeg)

![](_page_25_Picture_1.jpeg)

![](_page_25_Picture_2.jpeg)

- Adapted the Shchepetkin (2015) split implicit-explicit vertical advection scheme into Runge-Kutta framework.
- Shown that it is stable for fast-slow time splitting methods (Wicker and Skamarock 2002)
- Coded it up for several test problems and a simply dry 2D model
- Implemented it in WRF works as expected for an idealized supercell simulation
- Time step can be increased by 20-50% while...preserving the statistics of vertical velocity better than other approaches.
- Time to move onto full physics NWP run (been hopeful before!)

![](_page_26_Picture_0.jpeg)

#### 27 April 03Z 1 KM REF

![](_page_26_Picture_2.jpeg)

![](_page_26_Figure_3.jpeg)

![](_page_27_Picture_0.jpeg)

#### 27 April 03Z 1 hour Max Updraft

![](_page_27_Picture_2.jpeg)

![](_page_27_Figure_3.jpeg)

![](_page_28_Picture_0.jpeg)

#### 27 April 03Z 1 hour Max UH

![](_page_28_Picture_2.jpeg)

![](_page_28_Figure_3.jpeg)

![](_page_29_Picture_0.jpeg)

#### 27 April 03Z Temp-2m

![](_page_29_Picture_2.jpeg)

![](_page_29_Figure_3.jpeg)

![](_page_30_Figure_1.jpeg)

#### 28 April 00Z 1 KM REF

![](_page_30_Picture_3.jpeg)

- 60

- 50

40

30

- 20

- 10

![](_page_30_Picture_4.jpeg)

![](_page_31_Picture_0.jpeg)

#### 28 April 00Z 1 hour Max Updraft

![](_page_31_Picture_2.jpeg)

![](_page_31_Figure_3.jpeg)

![](_page_32_Picture_0.jpeg)

#### 28 April 00Z 1 hour Max UH

![](_page_32_Picture_2.jpeg)

![](_page_32_Figure_3.jpeg)

![](_page_33_Picture_0.jpeg)

#### 28 April 00Z Temp-2m

![](_page_33_Picture_2.jpeg)

![](_page_33_Figure_3.jpeg)

![](_page_34_Picture_0.jpeg)

#### Spring Exp (2017) CAM Updraft Statistics

![](_page_34_Picture_2.jpeg)

#### 700 mb W for hours 18-26 (21 days)

![](_page_34_Figure_4.jpeg)

Updraft Percentiles for 700 mb

Figure courtesy of C. Potvin

![](_page_35_Picture_0.jpeg)

![](_page_35_Picture_2.jpeg)

- Timings from 3 hour run 00Z-03Z 27 April
  - I/O omitted
  - 960 cores
  - 3 runs for each configuration

| dt:                                   | HRRR<br>20 s | IEVA-3<br>24 s | IEVA-1<br>24 s |
|---------------------------------------|--------------|----------------|----------------|
| Run1                                  | 443.1        |                | 383.4          |
| Run2                                  | 443.0        |                | 383.5          |
| Run3                                  | 442.1        |                | 386.9          |
| Avg                                   | 442.7        |                | 384.6          |
| Speed<br>Up<br>from<br>HRRR<br>config |              |                | 14%            |

![](_page_36_Picture_0.jpeg)

#### 27 April 03Z 1 hour Max Updraft

![](_page_36_Picture_2.jpeg)

### dt = 15 sec / No Filters

![](_page_36_Picture_4.jpeg)

![](_page_36_Picture_5.jpeg)

#### dt = 20 s / both Filters

![](_page_36_Figure_7.jpeg)

![](_page_36_Figure_8.jpeg)

![](_page_37_Picture_0.jpeg)

#### 27 April 03Z 1 hour Max UH

![](_page_37_Picture_2.jpeg)

![](_page_37_Figure_3.jpeg)

![](_page_38_Picture_0.jpeg)

#### 27 April 03Z 1 hour Max UH

![](_page_38_Picture_2.jpeg)

![](_page_38_Figure_3.jpeg)

![](_page_39_Picture_0.jpeg)

![](_page_39_Picture_1.jpeg)

![](_page_39_Figure_2.jpeg)

*i*-3 *i*-2 *i*-1 *i i*+1 *i*+2 *i*+3

х

![](_page_40_Picture_0.jpeg)

### 2D Advection Tests

![](_page_40_Picture_2.jpeg)

#### Durran-Blossy Test

![](_page_40_Figure_4.jpeg)

![](_page_41_Picture_0.jpeg)

## Previous Work

![](_page_41_Picture_2.jpeg)

- Other approaches?
  - FV3: partially decouple vertical advection from horizontal via "lagrangian" vertical discretization
  - Baldauf (2010) RK4 with 4th order advection? (potentially 45% increase in time step vs RK3)
  - Semi-lagrangian vertical advection (Wicker, 2015) unstable with time splitting (but worked!)
  - Increase time step through more RK iterations (Hu 1996, Wicker RK5 WRF scheme)
- If we can increase the large time step and gain an efficiency increase:
  - by 10%? Valuable for operational systems!! (10% is probably 7-10 minutes for HRRR run)
  - by 20%?
    - higher horizontal and vertical resolution (but increased vertical costs current has 2x cost).
    - more complex physics (2-moment microphysics?)
    - more ensemble members?

![](_page_42_Picture_0.jpeg)

### Stability Analysis

![](_page_42_Picture_2.jpeg)

RK3 Advection Only 5th order spatial

![](_page_42_Figure_4.jpeg)

![](_page_43_Picture_0.jpeg)

![](_page_43_Picture_1.jpeg)

![](_page_43_Picture_2.jpeg)

#### Time-Split RK3 5th-order Adv & Vert. Implicit (beta\_offset=0.55)

![](_page_43_Figure_4.jpeg)

![](_page_44_Picture_0.jpeg)

# Some details

![](_page_44_Picture_2.jpeg)

- Prototype WRF eq for "S"
- Solving only for Ex/Im advection piece...
  - could add other pieces (pos-def tends, etc)
  - ROMS adds in vertical diffusion solving that implicitly as well.
- Tridiagonal solution written in incremental form
  - extra terms on RHS accounts for increments from time "n".
  - solved on each sub-RK step

$$\begin{split} \overline{s_{ijk}^{l+1} = s_{ijk}^{l} + \Delta t^{l} F_{adv}^{ex} \left(s^{l}\right)} \\ & - \frac{\Delta t^{l}}{\Delta z_{ijk}} \left[ \max(w_{k+1/2}^{im}, 0) s_{k}^{l+1} + \min(w_{k+1/2}^{im}, 0) s_{k+1}^{l+1} \right]_{jk} \\ & + \frac{\Delta t^{l}}{\Delta z_{ijk}} \left[ \max(w_{k-1/2}^{im}, 0) s_{k-1}^{l+1} + \min(w_{k-1/2}^{im}, 0) s_{k}^{l+1} \right]_{jk} \\ \hline A_{k} \delta s_{k-1}^{l+1} + \left(1 + B_{k}\right) \delta s_{k}^{l+1} + C_{k} \delta s_{k+1}^{l+1} = \Delta t^{l} F_{adv}^{ex} \left(s^{l}\right) \\ & -A_{k} s_{k-1}^{n} - B_{k} s_{k}^{n} - C_{k} s_{k+1}^{n} \\ \hline F_{adv}^{ex} = F_{adv}^{ex} + \frac{\delta s}{\Delta t} \\ A_{k} = -\Delta t \max(w_{k-1/2}^{im}, 0) \\ C_{k} = \Delta t \min(w_{k+1/2}^{im}, 0) - \min(w_{k-1/2}^{im}, 0) \\ B_{k} = \Delta t \left[ \max(w_{k+1/2}^{im}, 0) - \min(w_{k-1/2}^{im}, 0) \right] \\ \hline \end{split}$$

![](_page_45_Picture_0.jpeg)

# Algorithm Details...

![](_page_45_Picture_2.jpeg)

#### DO LOOP = 1, RK-ORDER

![](_page_45_Figure_4.jpeg)

![](_page_46_Picture_0.jpeg)

#### Feeling Dazed and Confused?

![](_page_46_Picture_2.jpeg)

![](_page_46_Picture_3.jpeg)

#### Translating Downburst Test

AUGUST 2002

![](_page_47_Picture_1.jpeg)

\_\_\_\_\_

- 2D dry compressible model
- 36 x 6 km Box: X(periodic) / Z(rigid)
- Adiabatic profile
- T<sub>Init</sub> = -16K bubble
- U<sub>init</sub> = 20 m/s (no shear)
- T=900 s:

Solution should be anti-symmetric

- U<sub>max</sub> ~ 55 m/s
- W<sub>max</sub> ~ -30 m/s

![](_page_47_Figure_12.jpeg)

WICKER AND SKAMAROCK

FIG. 2. Perturbation potential temperature reference solution for the translating downburst problem using a 4th-order leapfrog integration method with a grid resolution of 50 m. The max, min, and contour interval are displayed in the upper left.

![](_page_48_Figure_0.jpeg)

![](_page_49_Figure_0.jpeg)

![](_page_50_Picture_0.jpeg)

# Idealized Supercell

![](_page_50_Picture_2.jpeg)

- El Reno 24 May 2011 Sounding (i.e., the Orf supercell)
- Domain: 240 x 240 x 20 km (2 km x 2 km x 61L)
- WRF-ARW 3.9.1
- NSSL 2-mom microphysics scheme
- 2.5 hour simulation
- 4 runs shown
  - benchmark (no filtering) max dt = 7.5 sec
  - w-damp ON, max dt = 10 sec
  - w-damp ON, mp\_tend = 0.07, max dt = 12 sec
  - IEVA, (no filtering), dt = 18 sec

![](_page_50_Picture_13.jpeg)

![](_page_51_Picture_0.jpeg)

# El Reno T = 2 hrs

![](_page_51_Picture_2.jpeg)

![](_page_51_Figure_3.jpeg)

![](_page_52_Picture_0.jpeg)

### El Reno Supercell

![](_page_52_Picture_2.jpeg)

![](_page_52_Figure_3.jpeg)

![](_page_53_Picture_0.jpeg)

### El Reno Updrafts

![](_page_53_Picture_2.jpeg)

![](_page_53_Figure_3.jpeg)