

2019 Joint WRF/MPAS Users' Workshop

The Final Rapid Refresh and High-Resolution Rapid Refresh Operational Implementation and the Bridge to a Unified Forecast System

11 June 2019

Curtis Alexander, David Dowell, Trevor Alcott, Isidora Jankov, Stan Benjamin, Steve Weygandt, Terra Ladwig, Ming Hu, Jeff Duda, Tanya Smirnova, Joseph Olson, Jaymes Kenyon, Georg Grell, Eric James, Haidao Lin, and John Brown

NOAA/ESRL/GLOBAL SYSTEMS DIVISION

 \bigcirc

RAP/HRRR Model Forecast Suite

RAP/HRRR Implementation History

Operational Implementations

<u>01 May 2012</u> → RAPv1: Adoption of GSI, WRF-ARW and unified post → Enabled use of community-developed software	 <u>25 Feb 2014</u> ➢ RAPv2: Hybrid EnKF-3DVar data assimilation ➢ Significant improvement in upper-air forecasts
 <u>30 Sep 2014</u> HRRRv1: 3-km Radar DA in WRF-ARW Significant improvement in convective forecasts 	 <u>23 Aug 2016</u> ➢ RAPv3/HRRRv2: Aerosol Thompson MP, improvements to MYNN PBL, RUC LSM, RRTMG Rad, Grell-Freitas cumulus ➢ Significant improvement in surface forecasts
 <u>12 Jul 2018</u> RAPv4/HRRRv3: Hybrid Vertical Coordinate, Eddy Diffusivity Mass Flux PBL Reduction in short-lead biases and improved mesoscale environment Extended forecast lengths to 39/36 hrs HRRR-Alaska 	 Mar/Apr 2020 RAPv5/HRRRv4: Storm-scale ensemble DA, Wildfire Smoke Prediction, Great Lakes Ice Reduction in longer-lead biases Extended forecast lengths to 51/48 hrs

WRF/MPAS • RAP/HRRR Implementations

2020 RAPv5/HRRRv4 Change Candidates

Model	Data Assimilation	Land-surface / post
WRF-ARWv3.9+ incl. phys changes <u>Physics changes:</u> MYNN PBL update – better sub-grid clouds, improved EDMF mixing - remove limit for subgrid qc/qi - decrease subgrid qc/qi radii RRTMG modifications for subgrid clouds Aerosols sources/sinks – fire/smoke, dust - Add smoke with VIIRS FRP Improved land-surface/snow model including better 2m T/Td diagnostics Latest Grell-Freitas conv (RAP only) Lake model for small lakes Enhanced gravity-wave drag <u>Numerics changes:</u> Reduced 6 th order diffusion inc. hydrom Removal of mp_tend_lim Implicit-explicit vertical advection	Merge with GSI trunk – 2019 <u>New Observations for assimilation:</u> GOES-16 radiances, CrIS/ATMS TC vitals for trop cyclone location/ strength Aircraft/raob moisture obs for p<300 hPa VIIRS/MODIS fire radiative power <u>Assimilation Methods:</u> HRRR - 3km ensemble DA (36 mems out to 1h) – HRRRDAS mean for HRRR IC and BEC	Switch to MODIS albedo (higher), replace 1-deg albedo. Add zenith-ang albedo adj 15" resolution land use data Fractional sea/lake ice concentration FVCOM data for Great Lakes lake temp/ice concentration VIIRS/MODIS/GOES fire radiative power HAILCAST diagnostic

RAPv4/HRRRv3 Summary of Changes

Operational RAPv4/HRRRv3

No Change in CONUS Domains

Newer Model Version More Ensemble Weight Advanced "Physics Suite"

Seasonal Vegetation Fraction/Leaf Area Index

igodol

RAPv4/HRRRv3

WRF/MPAS

	Model	Run at:	Dor	nain	Grid Points	Gr Spa	rid cing	d Vertic ing Level		Vertical Coordinate		Pressure Top		Boundary Conditior s		Initialized			
	RAP	GSD, NCO	No Ame	orth erica	953 x 834	13	km	(m 50		Sigma-Is Hybric		10 mb		GF	S H		ourly vcled)		
	HRRR	GSD, NCO	CO	NUS	1799 x 1059	3 k	ſm	50		Sigma Hyl	gma-Isob Hybrid 20		20 mb		P forec		ly (pre- ast hour /cle)		
	Model	Versio	on	As	ssimilatio	on Rada		Radar DA Ra		liation V/SW	Micro	Microphysics		nulus ram	PBL		LSM		
	RAP	WRF-A v3.8.1	RW I+	En:	GSI Hybri semble 0	SI Hybrid emble 0.85		13-km DFI, ½ Strength		TMG/ RTMG	Thor Aerose	Thompson Aerosol v3.8.1		GF + Shallow		NN 8.1	RUC v3.8.1		
"	HRRR	WRF-A v3.8.1	RW +	(En:	SSI Hybrid semble 0.85		d 3- .85 15-m		d 3-km 85 15-min l		RR RR	TMG/ RTMG	Thor Aeroso	mpson ol v3.8.1	N	one	MY v3.	NN 8.1	RUC v3.8.1
	Model	Horiz/Ve Advectio	Horiz/Vert Scalar Advection Advection		r Up on Dam	vel ping		6 ^t Di	6 th Order Diffusion		SW Radiation Update		and se	MP Tend Limit		Time- Step			
	RAP	5 th /5 th	P	ositiv Definit	e- w-Ra e 0	yleigh .2	ר Full (2)			Yes 0.12	2	0 min MC)DIS sonal	0.01	K/s	60 s		
	HRRR	5 th /5 th	P	ositiv Definit	e- w-Ra e 0	yleigh .2	Fu	ull (2)		Yes 0.25		min with M SW-dt Se		DIS sonal 0.07		K/s	20 s		

RAPv4/HRRRv3 Summary of Changes

Upcoming RAPv5/HRRRv4

No Change in Domains

Newer Model Version HRRRDAS Use Advanced "Physics Suite"

CLM Lake Model FVCOM Great Lakes

igodol

RAPv5/HRRRv4

WRF/MPAS

	Model	Run at:	Dor	nain	Grid Points	Gr Spa	id Vert cing Lev		cal els	Vertical Coordinate		Pressure Top		Boundary Condition s		, Initialized																																					
	RAP	GSD, NCO	Nc Ame	orth erica	953 x 834	13	13 km 50			Sigma-Isob Hybrid		10 mb		GF	S Ho		ourly /cled)																																				
	HRRR	GSD, NCO	COI	NUS	1799 x 1059	3 k	km 50			Sigma-Isob Hybrid		20 mb		RA	Houı P forec. C		rly (pre- ast hour ycle)																																				
	Model	Versio	on	A	ssimilatio	on Rada		Radar DA		Radiation LW/SW		crophysics		Cumulus Param		BL	LSM																																				
	RAP	WRF-A v3.9.1	RW I+	C En	GSI Hybri semble 0	d 13-km DFl .85 ½ Strength		n DFI, rength	RR RF	TMG/ RTMG	Tho Aeros	Thompson Aerosol v3.8.1		GF + Shallow		NN 9.1+	RUC v3.9.1+																																				
"	HRRR	WRF-A v3.9.1	RW I+	(F En	GSI Hybri IRRRDA semble 0	Hybrid RDAS ble 0.85		d 3 S 15-r .85		3-km 15-min LH		3-km 5-min LH		3-km -min LH		3-km 15-min LH		3-km 15-min LH		3-km 15-min LH		3-km 15-min LH		3-km 15-min LH		3-km 15-min LH		3-km 15-min LH		3-km 15-min LH		3-km 15-min LH		3-km 15-min LH		3-km 15-min LH		3-km 15-min LH		3-km 15-min LH		3-km 15-min LH		3-km 15-min LH		TMG/ RTMG	Tho Aeros	mpson ol v3.8.1	No	one	MY v3.9	NN 9.1+	RUC v3.9.1+
	Model	Horiz/Ve Advectio	rt S on Ad	Scala Ivecti	r Upj ion Dam	ver- vel Di ping (Diffusion Option		ffusion Option		th Order iffusion U		SW diation Ipdate	Land Use		MP Tend Limit		Time- Step																																		
	RAP	5 th /5 th	P C	ositiv Definit	e- w-Ra e 0	yleigh .2	Fu	ull (2)	0.	Yes 12/0.04	1 2	20 min	MC Sea	DIS sonal	Noi	ne	60 s																																				
	HRRR	5 th /5 th	P	ositiv Definit	e- w-Ra e 0	yleigh .2	Fu	ull (2)	0.	Yes 12/0.04	15 4 :	min with SW-dt	MC Sea	DIS sonal	Noi	ne	20 s																																				

RAPv5/HRRRv4 Transition to Operations

RAPv5/HRRRv4 What:	When:
GSD-EMC Package Briefing	25 Sept 2018
GSD-EMC Package Briefing	Nov-Dec 2017
GSD code hand-off to EMC	04 June 2019 (underway)
NCEP EE2 Meeting	Jul 2019
EMC 24x7 parallel	Jul 2019
EMC Evaluation Begins	15 Aug 2019
EMC Evaluation Ends	15 Oct 2019
EMC CCB Meeting	Late Oct 2019
NCEP Director Briefing	Late Oct 2019
EMC code hand-off to NCO	01 Nov 2019
NCO 24x7 parallel	Jan 2020
NCO 30-day start	10 Feb 2020
NCO Management Meeting	March 2020
NCEP Implementation	23 March 2020

RAP/HRRR/HRRRE "ASNOW" algorithm

Implicit-Explicit Vertical Advection in HRRR (NSSL-GSD collaboration)

WRF/MPAS

IVEA in HRRR

HRRRv3 Initialization from RAPv4

Proposed HRRRv4 Initialization

HRRRDAS/E Design

WRF/MPAS • HRRRE Design

2019 HRRRDAS (Ensemble Analysis System)

Nested CONUS 15-km and 3-km domains with new R&D HPC resources (Jet augmentation)

36 members hourly-cycled over full CONUS

- Initial mean from GFS (atmos.) and RAP-HRRR (soil)
- Atmospheric perturbations from GFS ensemble (GDAS) to initialize HRRRDAS ensemble 1x per day
- Random soil-moisture perturbations

Hourly cycling with EnKF data assimilation

- Conventional observations both domains
- Reflectivity observations 3-km domain only
- Analysis variables: U, V, PH, T, MU, QVAPOR, QCLOUD, QICE, QRAIN, QSNOW, QGRAUPEL
- **Sources of Spread**
- Hourly DA (posterior inflation)
- Lower boundary perturbations (soil moisture)
- Lateral boundary perturbations

HRRRDAS Foundation for Future Implementations

Reflectivity Verification CSI 25 dBZ, eastern US, 20-km scale

HRRRX using **HRRRDAS**

Composite Reflectivity : DieOff: no diffs MATCHED

--- Curve0: HRRR_GSD in Eastern US (Ion <= 100W), 25 (reflectivity >= 25 dBZ) 20 km grid, CSI (Critical Success Index), Dieoff, 02/02/2019 0:00 - 02/27/2019 0:00

--- Curve1: HRRR_dev3 in Eastern US (Ion <= 100W), 25 (reflectivity >= 25 dBZ) 20 km grid, CSI (Critical Success Index), Dieoff, 02/02/2019 0:00 - 02/27/2019 0:00

Composite Reflectivity : DieOff: no diffs MATCHED

WRF/MPAS

 \bigcirc

--- Curve0: HRRR_GSD in Eastern US (Ion <= 100W), 25 (reflectivity >= 25 dBZ) 20 km grid, CSI (Critical Success Index), Dieoff, 04/09/2019 0:00 - 04/24/2019 0:00 ---- Curve1: HRRR_dev3 in Eastern US (Ion <= 100W), 25 (reflectivity >= 25 dBZ) 20 km grid, CSI (Critical Success Index), Dieoff, 04/09/2019 00:00 - 04/22/2019 15:00

--- Curve1: HRRR_dev3 in Eastern US (Ion <= 100W), 25 (reflectivity >= 25 dBZ) 20 km grid, CSI (Critical Success Index), Dieoff, 12/12/2018 0:00 - 12/30/2018 0:00 Curve0- mean = 21.33 Curve0- mean = 15.61 Curve0- mean = 18.00 Curve1- mean = 22.46 Curve1- mean = 16.07 Curve1- mean = 18.57 45 20 25 40 20 35 15 30 15 25 x100 x100 x100 10 20 10 15 10 recent results December February 5 0 10 12 14 12 16 18 12 14 Forecast Hour Forecast Hour Forecast Hour HRRRDAS mean **HRRRDAS** mean **HRRRDAS** mean **GDAS** ensemble **HRRRDAS** ensemble **HRRRDAS** ensemble

--- Curve0: HRRR_GSD in Eastern US (Ion <= 100W), 25 (reflectivity >= 25 dBZ) 20 km grid, CSI (Critical Success Index), Dieoff, 12/12/2018 0:00 - 12/30/2018 0:00

HRRRX

Composite Reflectivity : DieOff: no diffs MATCHED

igodol

HRRR Composite Reflectivity Verification

HRRR Upper-Level Verification

11 June 2019 • 16

Verification

igodot

WRF/MPAS

igodol

2m Temperature Verification

Verification

Hour of Day

2m Dewpoint Verification

27 hr Forecasts Valid 03 UTC 27 May 2019

 \bigcirc

Verification

RTMA-3D: Meso-to-storm scale analysis

2019 HRRRE (Ensemble Forecast System)

Full-CONUS 3-km forecasts initialized from 3-km analyses, 9-members + ens products

- 00 UTC: 0-36 hr forecast
- 12 UTC: 0-24 hr forecast
- 18 UTC: 0-24 hr forecast
- Will be evaluated by NSSL/SPC/WPC/AWC in testbeds including CLUE
- Real-time experimental guidance available to NWS offices

Sources of Spread

WRF/MPAS

- Hourly DA (posterior inflation)
- Lower boundary perturbations (soil moisture)
- Lateral boundary perturbations

 \bigcirc

 Stochastic parameter perturbations across all of RAP/HRRR physics suite

HRRRE

igodol

HRRRE

2019 HWT Spring Forecast Experiment: CAM Ensembles

Data processed and plotted at NOAA NSSL/NWS SPC • Part of the NOAA Hazardous Weather Testbed

igodol

Verification

CAM Ensemble PQPF Verification: 09-21 May 2019

igodol

RAP/HRRR Smoke Capability

Smoke

Time

 \bigcirc

RAP/HRRR Smoke Capability

Surface visibility forecasts for 15 Aug 2018

Numerical Weather Prediction system w/o smoke (HRRR)

Smoke

NWP model with smoke (HRRR-Smoke)

CAM SIP FY19-21

Project 7.1: Implementation of the RAPv5/HRRRv4 CAM ensemble analysis and hybrid deterministic HRRR forecast system

Project 7.2: Development of a SAR FV3 Meso/CAM replacement systems for NAM/RAP/HREF-Member

- Project 7.3: Developing a full CAM-scale ensemble DA and prediction system based on the SAR FV3 system
- Target FY22 for Rapid-Refresh Forecast System (RRFS) based on SAR FV3 and JEDI to replace NAM/RAP/HRRR/HREF

[ARW, NMMB] → FV3 [GSI, GSI-EnKF] → JEDI [UPP] → UPP Refactored

11 June 2019 • 25

WRF/MPAS • UFS

Through collaboration with EMC (Jim Purser):

- Concentrate model coordinates (great circles) near center of tile six to improve uniformity after stretching
- Added two plotting parameters (alpha and kappa) to the generation of the gnomonic grid
- Flares the corners of the grid to reduce grid variability

Blue represents the outline of the SAR grid (tile seven) with the sixth tile of the global FV3 in red

igodol

SAR FV3

Comparison of RAP/RAP-equivalent Grids

RAP/HRRR physics suite now using CCPP interface

HRRR-FV3 runs starting using RAPv5 LBCs and HRRRv4 ICs along with RAPv5/HRRRv4 physics this month **Note: We are transferring all RAP/HRRR data assimilation and model physics capabilities to the (SAR) FV3**

WRF/MPAS • SAR FV3

igodol

UFS

UFS CAM Application(s): The RRFS/WoFS

RAP/HRRR/CCPP ESRL/GSD Development Talks

P25	Wed 1:30	Jaymes Kenyon	Recent development of the MYNN turbulence parameterization for RAPv5 / HRRRv4
P27	Wed 1:30	Ligia Bernardet	Facilitating development of physical parameterizations for NOAA's Unified Forecast System
P58	Wed 1:30	Evan Kalina	Evaluation of the MYNN planetary boundary layer scheme in the Hurricane Weather Research and Forecast (HWRF) system
9.2	Thu 10:45	Joseph Olson	Improving cloud and solar radiation forecasts in the RAP/HRRR forecast systems
9.5	Thu 11:30	Michael Toy	Evaluating and tuning the orographic gravity wave drag scheme in the RAP model
10.6	Thu 2:45	Dom Heinzeller	The Common Community Physics Package CCPP: Unifying physics across NOAA and NCAR models using a common software framework