Joint WRF/MPAS Users' Workshop, June 11-14, 2019

Implementation of Incremental Analysis Updates in an 1-hr cycling forecasting system

Min Chen¹, Xiang-Yu Huang², Wei Wang³

¹Institute of Urban Meteorology, CMA, Beijing

²Meteorological Service Singapore, Centre for Climate Research Singapore

³National Center for Atmospheric Research, Boulder, Colorado

OUTLINE

□Introduction

- **WRF/IAU Coupling**
- **D**1-hr Updated Cycling System
- **□IAU Configuration and Test**

□Results

Initialization Performances
Spin-up/Spin-down Features
Impact on Data Assimilation
Precipitation Forecasts
Conclusions and Discussion

01 Introduction of IAU

Developed by *Bloom et al. (1996)*

□Widely used in atmospheric and oceanic applications. In Atmospheric Research:

- Demonstrated identical to incremental digital filtering (IDF) for linear models with time-invariant coefficients (*Polavarapu et al. 2003*)
- Physical-space statistical analysis system (PSAS) analysis (*Zhu et al. 2003*)

DMM5 3DVAR (*Lee et al. 2006*)

- ■A hybrid of nudging and IAU implemented in ensemble Kalman filter (*Bergemann & Reich, 2010*)
- ■EnKF with 4DIAU (Lei & Whitaker, 2012)
- □IAU-based NASA/GSFC 4D-Var (*Zhang et al. 2015*)
- ■Real-time1-km ARPS assimilating increments produced by 3DVAR with cloud analysis using IAU (*Stratman &Brewster, 2017*)
- ☐ The convective scale NWP system for Singapore (SINGV). SINGV-DA runs with 3h cycle, using 3D-Var FGAT followed by IAU over a 2h-span. uniform.

02 WRF/IAU Coupling

Bloom et al. (1996):

For an arbitrary prognostic variable Φ , its tendency is

 $\frac{\partial \Phi}{\partial t} = \left(\frac{\partial \Phi}{\partial t}\right)_{dynamics} + \left(\frac{\partial \Phi}{\partial t}\right)_{physics} + \lambda(t) \cdot \delta \Phi_{IAU}$

 $\delta \Phi_{IAU}$ is analysis increments

 $\int_{0}^{\Delta t_{c}} \lambda(t) = 1$, where Δt_{c} is the duration of analysis increments integration

□ In WRF, the RK3 integration takes the form of 3 steps to advance a solution Φ(t) to Φ(t+Δt). IAU is implemented as increments as: $Φ(t + Δt) = Φ(t + Δt) + λ(t) \cdot δΦ_{IAII}$

 δ_i represents analysis increment at t=i

02 WRF/IAU Coupling--*how to implement*?

Data Assimilation

./Gen_analysis_increments
-fg wrfinput_d01
-an wrf_3dvar_output_d01.radar
-out ./analysis_increment_d01

Analysis_increment_d01

Normal Integration **During IAU integration (WRFV3.9.1):** IF (grid%iau .and. $domain_clockisiaustoptime(grid)$) then $Grid\%F_2=Grid\%F_2+Grid\%IAU_F*hn$ Where F represents $U/V/T/\Psi/P/MU/PH/QV/QC/QR/QS/QI$ ENDIF

03 1-hr Updated Cycling System

- ■Model Configuration
 - **U**WRF Version 3.9.1
 - □One-way nested domains
 - **□** 9km: 649x500
 - □ 3km: 550x424
 - **5**1 sigma levels
 - □ Physical Parameterizations
 - □ RRTMG for both SR and LR
 - **Thompson microphysics**
 - □ K-F cumulus scheme for d01
 - □ YSU PBL scheme
 - □ Noah LSM

□ See Poster P47

□Initial and boundary conditions: 12-hr ECMWF forecasts (0.25 degree)

03 1-hr Updated Cycling System

Data Assimilation
WRFDAV3.8.1
U/V Control Variables
Data Assimilated
Conventional GTS Observations

Radar reflectivity mosaic

Radial velocity and reflectivity from 7 Doppler Radar in Beijing-Tianjin-Hebei (JJJ) area

Two-step 3DVAR assimilation

	Data Assimilated	Len_Scaling	Var_scaling
Step I 3DVAR_L	GTS data	1	1
Step II 3DVAR_S	Radar Reflectivity Radial Velocity	Len_scaling=0.5 (u,v, t_w, p_{su}, q') Len_scaling=0.7(q_r)	Var_scaling=0.5 (u,v, t_u, p_{su}, q')

03 1-hr Updated Cycling System

04 IAU Configuration---time-weighted coefficients

■ The time-weighted coefficient $hn(\lambda(t))$, where $\int_0^{\Delta t_c} \lambda(t) = 1$, Δt_c is the duration of analysis increments integration, corresponding to IAU_xtime in WRF.

□ In WRF, the coefficients (*hn*) are derived by the sub dfcoef with different cutoff and IAU_xtime configuration.

- \Box With *IAU_xtime=7200 s*, selections of *hn*
 - □ *Uniform:* hn=1/NSTEPS
 - □ *DOLPH1800:* Dolph filter with cutoff 1800 s
 - □ *DOLPH3600* : Dolph filter with cutoff 3600 s
 - □ *Dolph-Win:* Dolph-chebyshev window with cutoff=7200 s

Coefficients:

- □ <u>Uniform: no transition accumulation of analysis increments, although it's the most</u> <u>popular selection in IAU implementations</u>
- \square DOLPH1800: better transition but too sharp at t=0
- □ *DOLPH3600*: better transition but unreasonable at starting and ending timestep
- Dolph-Win: the most reasonable

□ Amplitude:

- DOLPH1800 and Dolph-win efficiently remove the short wave < 1h period with reasonable amplitudes kept untouched</p>
- DOPLPH3600 filtered too much
- □ Uniform: 50% amplitudes loss and distortion of short waves

04 IAU Experiments

Experiment ID

NOIAU

Description

IAU-Related

NO IAU

 1-hr updated cycles initiating during 00UTC 9 ~ 23UTC 18 July 2018, totally 240 cycles

- □ Lateral boundary updated at 00/12UTC
- □ Partial cycle initiated at 00UTC
- □ Integration Time: t=6hrs
- **D**ata assimilated:
 - □ 9km: GTS+Radar RF Mosaic
 - □ 3km: GTS+Radar RV+RF in JJJ region

IAU_XTIME=7200 s, corresponding to time window t=-1~1h

Dolph-chebyshev window Filter (nfilt=6) with cutoff=7200 s

- Uniform coefficients
- □ Same time window as IAU06

IAU09

IAU06

05 Results---Initialization Performances

05 Results---Spin-up/Spin-down Features

DATE

DARDT: Domainaverage hourly precipitation rate

■The consecutive 0~1h DARDT time series for the total 240 cycles

■NOIAU: High precipitation rates quickly drop within the 1-st forecasting hour.

□IAU06: Lower precipitation rate

□IAU09: Lower and stable precipitation rate

05 Results---Precipitation Performances

□IAU leads to greatly (10~20%) improved precipitation threat scores, especially for large thresholds.

□Large bias (over-prediction) at the initial forecast hours has been reduced to reasonable and stable level.

The Dolph-win generally has better performance than the uniform filtering coefficients.

06 Results--- Impact on Data Assimilation: SYNOP

06 Results--- Impact on Data Assimilation: SOUND

07 CASE1:20180715---Less False Alarm

07 CASE2:20180716---Reduced Over-prediction

07 CASE2:20180716--- Reduced Over-prediction

07 CASE2:20180716--- Reduced Over-prediction

07 CASE3:2018071808-10--- Reduced Over-prediction

07 CASE3:2018071808-10--- Reduced Over-prediction

Conclusions and Plans

 An IAU scheme is developed for WRF and implemented in a 1-h cycling forecasting system.
 IAU is demonstrated as an ideal initialization scheme

Good initialization performances

- □ Reasonable noise level
- Lower and stable precipitation rates at the initial forecast
- □ <u>More data effectively assimilated due to the</u> <u>more balanced 1-hr forecasts generated with</u> <u>IAU</u>

□ <u>Significantly improved precipitation forecast</u> <u>performances</u>

■Better threat score and stable bias

□Less false alarm and reduced over-prediction

■About the IAU configuration:

□ Dolph-Chebyshev-window filtering coefficients are physically reasonable and better performed over the uniform

□Future Work

- □Implement IAU with EMDIV, the external-mode filter coefficients for mass coordinate model
- Develop a tendency form of IAU
- □Figure out the impact of IAU on radar data assimilation
- Carry out real-time experiments and evaluations

Thank you!

mchen@ium.cn