Retrospective Analysis of 2015-2017 Winter-time PM_{2.5} In China: Response to Emission Regulations and The Role of Meteorology

Dan Chen (dchen@ium.cn), Zhiquan Liu , Junmei Ban, Pusheng Zhao, and Min Chen

Institute of Urban Meteorology, China Meteorological Administration, Beijing, China National Center for Atmospheric Research, Boulder, CO, 80301, USA

China applied strict pollution control strategies since 2010, especially for power and industry sectors

China's clean air policies implemented during 2010-2017

Source sector	Emission source	2010	2011	2012	2013	2014	2015	2016	2017
Power	Thermal power plants	GB 13223-2003			GB 13223-2011 "Ultra-low" emission standard				' emission dard
Industry	Flat glass	GB 9078- 1996		GB 26453-2011					
	Sinter	GB 9078-1996		GB 28662-2012					
	Coking	GB 16171-1996		GB 16171-2012					
	Iron	GB 9078-1996		GB 28663-2012					
	Steel making	GB 9078	3-1996	GB 28664-2012					
	Steel rolling	GB 9078	3-1996	GB 28665-2012					
	Electronic glass	GB 9078-1996			GB 29495-2013				
	Brick	GB 9078-1996				GB 29620-2013			
	Cement	GB 4915-2004				GB 4915-2013			
	Industrial boilor	GB 13271-2001			GB 13271-2014;				
	industrial boller				Eliminate small coal-fired boilers.				
	All	/			Phase out outdated industrial capacity; strengthen				
					emissions standards; phase out small, high-emitting				
					factories; install VOC emission control facilities				
Residential	All	No specific regulations			Replace coal with electricity and natural gas				
Transportation	Light duty gasoline vehicle	Euro 3			Euro 4 Euro				Euro 5
	Heavy duty gasoline vehicle	Euro 3			Euro 4				
	Diesel vehicle	Euro 3			Euro 4 Euro 5				Euro 5
	All	/			Strengthen emissions standards; retire old vehicles; improve fuel quality				

Regular Periods

Pollution Events

Stricter temporary control measurements

(Zheng et al. ACP, 2017)

"Bottom-up" El show significantly decreases since 2010 for most pollutants

National total emission changes compared to 2010

(Zheng et al. ACP, 2017)

Pollution control strategies are the main driver of recent emission decreases

Drivers of emission changes for different emission species

(Zheng et al. ACP, 2017)

Winter-time PM_{2.5} still fluctuate in North China Plain

Why?

Control measurements not executed? -> uncertainties in El The role of meteorology v.s. emission changes?

Limitations of air quality model

- **C0** (Initial Condition) +
 - E (Emission input) +
 - T (Meteorology) +
 - C (Chemistry) -
 - D (Scavenging)

How to make use of DA Technique?

Goals of this study

Technique

• Update of GSI-WRF/Chem 3D-Var for heavily polluted region

Science Purposes

- Reproduce 2015-2016-2017 winter-time PM2.5
- Separate the roles of meteorology and emission

2.1 GSI-WRF/Chem Aerosol DA systembasic framework

> 1600 sites from
http://www.cnemc.cn

2.1 GSI-WRF/Chem Aerosol DA systemupdate for application in China

2.2 Experiments Design

Simulation period: Dec. 20- Jan.31 of 2015, 2016 and 2017

MET IC/BC: GFS analysis every 6-hr

EI: MEIC_2010 (keep the same)

Scenarios: NO_DA (WRF-Chem run with 2010 EI) CONC_DA (GSI hourly DA)

Assimilated Obs.: hourly surface PM2.5

BE: NMC method

2.3 Verification

2.3 Verification-surface observation

2015

2016

2017

NO_DA MEAN BIAS, STDV, RMS increases from 2015-2017 CONC_DA Improved and much stable

2.3 Verification-surface observation

3.1 Separate the roles of meteorology and emission – methodology

CONC_DA_2016 - CONC_DA_2015

3.2 Separate the roles of meteorology and emission

2016-2015

OBS.

Assimilated inter-annual differences

3.2 Separate the roles of meteorology and emission

3.2 Separate the roles of meteorology and emission

Regional results (µg m⁻³)

	2016-2015				2017–2016		2017–2015			
	Total	MET	EMIS	Total	MET	EMIS	Total	MET	EMIS	
NCP	-15.23	-12.52	-2.71	+14.91	+23.16	-8.25	-0.31	+10.65	-10.96	
NEC	-20.09	-21.23	+1.14	+11.44	+12.61	-1.18	-8.66	-8.62	-0.04	
EGT	-21.69	1.68	-23.37	+4.86	+3.81	+1.05	-16.83	+5.48	-22.31	
XJ	+3.69	+0.07	+3.63	+1.85	+0.28	+1.57	+5.54	+0.34	+5.20	
FWP	-7.05	-10.19	+3.13	+22.95	+25.62	-2.66	+15.90	+15.43	+0.47	
SB	-18.75	+8.72	-27.48	+10.31	+4.02	+6.29	-8.45	+12.74	-21.19	
CC	-21.80	+14.73	-36.54	+9.35	+19.36	-10.01	-12.45	+34.09	-46.54	
YRD	-10.43	-3.03	-7.40	-11.45	-2.93	-8.52	-21.88	-5.96	-15.92	
PRD	-23.48	13.02	-36.50	+12.71	-6.12	+18.83	-10.77	+6.90	-17.67	
				-			-			

MET played different roles from 2016-2017

> For 2017, although surface observation increase, the emission control strategies are still archived.

New emissions in western China should be noted.

3.2 Separate the roles of meteorology and emission -uncertainties

- A. NO_DA simulations (MET, EMIS)
- **B. CONC_DA** (**DA** performances)
- C. Aerosol-Meteorology feedback

4 Summary

- The observations and the reanalysis data from assimilation experiment were used to investigate the year-to-year changes.
- The important roles of emission and meteorology in driving the changes in the three years can be distinguished and analyzed quantitatively.
- The uncertainties from three aspects, including the inaccurate emission assumption in the control scenario, the DA performance and the ignorance of other processes.

- Papers :
 - Chen D., Liu, Z., Fast, J., Ban, J.: Simulations of Sulfate-Nitrate-Ammonium (SNA) aerosols during the extreme haze events over Northern China, Atmos Chem Phys, 16, 10707–10724, doi:10.5194/acp-16-10707-2016.
 - Chen, D., Liu, Z., Ban, J., Zhao, P., and Chen, M.: Retrospective analysis of 2015–2017 wintertime PM2.5 in China: response to emission regulations and the role of meteorology, Atmos. Chem. Phys., 19, 7409-7427, https://doi.org/10.5194/acp-19-7409-2019, 2019.
 - Poster 10 (Wed.) : Chen, D., Liu, Z., Ban, J., and Chen, M.: 2015 and 2016 winter-time air pollution in China: SO2 emission changes derived from a WRF/Chem-EnKF coupled data assimilation system, Atmos. Chem. Phys., https://doi.org/10.5194/acp-2018-1152, in review (accepted), 2019.

dchen@ium.cn Thanks for your attention!