Improving forecasts of the record-breaking Guangzhou "57" rainstorm by assimilating every 10-min AHI radiances with WRF 4DVAR

Yali Wu¹, Zhiquan Liu¹, Deqin Li²

¹National Center for Atmospheric Research, Boulder CO, USA ²Institute of Atmospheric Environment, Shenyang, China

Joint WRF and MPAS Users' Workshop

June 10-14, 2019

Case review

A record-breaking rainstorm, Guangzhou, 7 May 2017

Method and data

- Method : WRF MRI-4DVar (WRF model : 3 km)
- Data: GFS 0.25° + Conventional obs + 20 Himawari-8 AHI three water vapor channels 30 Pressure (hPa) ·····IR7.3 in clear-sky conditions: 50 100 --IR6.9 – 2-km, every 10-min 200 ---IR6.2 Quality control (Honda et al, 2018a, b; Okamoto, 2017) 400 Cloud detection (Zhuge and Zou, 2016.) 600 800 Obs error statistics -0.12 -0.10 -0.08 -0.06 -0.04 -0.02 0.00 0.02 Jacobian 10%*q*Q
 - WRFDA offline VARBC statistics

Data coverage (For a 4DVar analysis)

Experiment design

Exps	Observations	DA method	
CON_3D	Con	3DVar	
AHI_3D	Con + AHI (single time)	3DVar	
CON_4D	Con	4DVar	[0, 30] min
AHI_4D	Con + AHI (every 10-min)	4DVar	[0, 30] min
Exprs were initialized 4 hours before CI For 4DVar, 27-km for the 1 st outer loop; 9-km for the 2 nd outer loop			

- MP: Thompson for model, warm-rain for 4dvar
- No Cu for model, KF Cu for innovation, cudu for minimization
- Short-wave radiation: RRTMG
- Long-wave radiation: RRTMG
- PBL: YSU; A simple vertical diffusion with surface friction scheme for 4DVAR
- Surface layer: Revised MM5 Monin-Obukhov scheme
- Land surface: unified Noah land-surface model

Analysis increment

- Upstream: AHI -> wetter low-levels
- Target area: AHI -> drier mid-levels
- 4DVar produced larger increments, especially for v wind, than 3DVar

Skew-T verification

against soundings at QY station

- OBS: dry layers during 700 400 hPa
- AHI_4D agreed best with OBS

Convection initiation (CI, BT@10.4 µm)

NCAR UCAR

90-min timing error, 20-30 km location error

Radar reflectivity

NCAR UCAR

@1800 UTC

Hourly area-summed rainfall amount

20-h accumulated rainfall

NCAR UCAR

Conclusions & Future plan

- 4DVAR exps largely reduced timing and location errors in convection initiation forecasts, while every 10-min AHI radiance DA further improved location forecasts.
- The combination of 4DVAR and AHI radiances improved precipitation forecasts and FSS scores
- Future: All-sky radiance DA

