

Modeling diurnal variation of surface PM2.5 concentration over East China with WRF-Chem: Impacts from boundary mixing and emission

Qiuyan Du, Chun Zhao*, Mingshuai Zhang, Xue Dong, Yu Chen, Zhen Liu, Zhiyuan Hu, Siyu Chen, Qiang Zhang

> WRF and MPAS Users' Workshop 2019 2019-06-12

Importance of PM_{2.5}

Health effect

The fourth risk factors of deaths in China

Climate effect

Interacting with radiation, serving as cloud condensation nuclei (CCN) and affecting climate indirectly

Previous studies

▷ PM_{2.5}

- Formation, Spatial and temporal variations
- Daily, monthly, seasonal scales

Diurnal variation of PM_{2.5}

- Lack of modeling studies, mechanisms still unclear
- Evident diurnal variations has been observed in East China
- Critical for revealing mechanisms of PM2.5 formation and evolution, affect simulating mean concentrations

Impact Factors

Emissions

Strength, Diurnal profile, Injection height

> Meteorology

Advection, Wet and dry deposition, Planetary boundary mixing

Chemical reactions

Secondary aerosol formation

Mechanisms of diurnal variation of PM_{2.5} still unclear and no evaluation research of modeling with WRF-chem

Model and Data

WRF-Chem

CBMZ gas chemistry, MOSAIC aerosol module,

KF convection, Morrison microphysics, YSU/MYNN PBL scheme

Domain & Period:

D01,Quasi-global domain(1deg,360x145)

D02,Nested domain(15km,112x105)

January, April, July, October of 2018

Anthropogenic Emission:
 2010 HTAP-EDGAR for D01
 2015 MEIC for D02

Observation data:

Ground observations from the MEP of China, 190 stations, East China, 2018

Nest 1deg/15km domain

- Diurnal Index(DI) = (Monthly average 24h) /Min_24h
- Observed evident seasonal variations
- WRF-Chem significant overestimate DI in summer and autumn

- In spring and autumn, observed DI are higher in the night and lower in the day, but shows noon peak in summer
- WRF-Chem catch the variation of observed DI with
 overestimate in the night, but fail to simulate the variation in summer
- Sensitivity to vertical layer configurations are lager than PBL schemes

- PM_{2.5} tendency has largest variation in summer and smallest variation in winter
- PBL mixing determines the diurnal variation of PM_{2.5}
- CTL1 has the largest
 variations due to lager
 contributions from
 emissions and PBL
 mixing

- PBL mixing is controlled by PBL mixing coefficient more directly in WRF-Chem
- PBL height show clear diurnal cycles and are similar between CTL1 and CTL2
- PBL mixing coefficient have larger variations, the largest diurnal variation of PBL mixing coefficients leads in summer to the largest PM2.5 variation

- Diurnal index of PM_{2.5}
 during night is significantly
 reduced and consistent with
 the observations better
- Enhanced PBL mixing coefficient reduces bias, but still get opposite diurnal pattern in summer due to a lack of SOA production
- Enhanced PBL mixing coefficient reduces the modeling sensitivity to the layer configuration

Diurnal cycle of emissions

- Diurnal index is reduced in spring and autumn but increase in winter and the south area in summer
- Decrease was shown in center cities, Increase happens in low emissions area due to the increase of transport and PBL mxing processes

Injection height of emission

• SO_2 concentration is significantly reduced in the night, this impact can reach up to 30%

Impacts on PM_{2.5} is quite smaller, the difference between two experiments < 10% in all seasons

Summary and Conclusion

- PBL mixing is the determinant factor in modeling the diurnal cycle of surface PM_{2.5} concentration over East China
- The PBL mixing coefficient instead of PBL height is the key factor controlling the diurnal cycle of surface PM2.5 concentration in WRF-Chem
- The increase of PBL mixing coefficient within boundary layer during the night can significantly reduce the modeling biases in simulating surface PM_{2.5} concentration and also the modeling sensitivity to the vertical layer configuration
- The diurnal cycle and injection height of emission play roles on simulating diurnal cycle of surface PM_{2.5} concentration but smaller than the impact from boundary mixing

Thank you!