

Institute of Atmospheric Physics, Chinese Academy of Sciences State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics

Numerical simulation of an extreme haze pollution event over North China Plain based on initial and boundary condition ensembles

Hongbo Liu¹, Xiaobin Li¹, Ziyin Zhang², Juanjuan Liu¹

¹ LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences ² Institute of Urban Meteorology, China Meteorological Administration

> Joint WRF/MPAS Users' Workshop 2019 10-14 June, 2019, Boulder, Colorado

- Introduction
- Case analysis
- Experiment design
- Model verification and ensemble results
- Summary

Introduction: haze pollution over China

Aerosol optical depth (AOD) over China (Dec. 2016 – Jan. 2017)

(Zhang 2017)

Introduction: haze pollution over BTH

BTH: Beijing-Tianjin-Hebei area

Annual variations of fog days and haze days from 1960 to 2012 over BTH

⁽Yan et al. 2019)

Introduction: haze pollution over BTH

BTH haze events happen under <u>favorable weather conditions</u>: increased low-level southerly winds, warm surface, and strong mid-level westerly winds.

(Cai et al. 2017) 5

https://ruc.noaa.gov/wrf/WG11/

Accurate air quality prediction is demanding: regional/global weather/climate models coupled with chemistry are the main tools for air quality research and prediction.

However, large biases exists because of:

a. uncertainties in emissions
b. high-complexities of physical and chemical processes in numerical models

c. uncertainties in meteorological conditions

Ensemble method is an effective way to reduce model biases

Multi-models

Huang et al. (2015) Zhai et al. (2018) Brasseur et al. (2019) Petersen et al. (2019)

Multi-physics schemes Cai et al. (2017)

Multi-emissions Tang et al. (2010)

Diurnal variations in the concentrations and of the RMSE and BIAS of O3, NO2, Ox, and PM2.5 from different models for Beijing during Apr. 2016-Jun. 2017 (Petersen et al. 2019)

Limitations:

Multi-model or multi-physics ensembles pay attention to physical or chemical uncertainties within or across models. In fact, meteorological conditions also introduce large uncertainties in air quality simulation or prediction.

Objectives of this study:

- Explore the effects of varying initial and lateral boundary values of meteorological field on the generation and transmission of PM_{2.5} through ensemble of runs with WRF-Chem model;
- Evaluate whether the ensemble experiments can effectively improve the simulation of PM_{2.5} concentration in regional air quality model.

- Introduction
- Case analysis
- Experiment design
- Model verification and ensemble results
- Summary

www.lasg.ac.cn

Case analysis

Topographic map and hourly averaged PM_{2.5} concentration

- Haze episode duration: Nov. 26 – Dec. 2, 2015
- Extreme PM_{2.5} concentration: 727µg/m³
- Eight Highly polluted cities: BJ, TJ, BD, HS, CZ, SJZ, XT, HD

Case analysis: Beijing

Observational PM_{2.5} concentration time series at Beijing

Case analysis: eight highly polluted cities

Time series of observed PM_{2.5} concentrations for eight highly polluted cities

- Introduction
- Case analysis
- Experiment design
- Model verification and ensemble results
- Summary

www.lasg.ac.cn

Experiment design

Grid size: 9 km

Experiment design

WRF-Chem model configuration

Items	Details				
Basic configurations	Model version: WRF-ChemV3.9.1.1 Vertical layers: 30 layers Model top: 50 hPa Simulation period: 00UTC25November – 00UTC3December, 2015				
Physical parameterization schemes	Microphysics: Morrison double-moment Longwave and shortwave Radiation: RRTMG Land Surface: Noah Land Surface, Revised MM5 Monin-Obukhov Planetary Boundary Layer: Yonsei University PBL Cumulus Parameterization: Grell-Freitas				
Chemical parameterization schemes	Chemical Mechanism: CBMZ including aqueous-phase chemical reaction Aerosol Scheme: 8 bins MOSAIC Photolysis Scheme: Fast-J Dry Deposition: On Wet Deposition: On Aerosol Direct Effect: On				
Emission source field	MEIC_base2012 (Tsinghua University)				

ERA5: the latest generation of atmospheric reanalysis released by ECMWF in 2017

HRES: hourly, 0.25 degree

10 EDA members: 3 hourly, 0.25 degree

Experiment	Initial condition	Initial condition Lateral boundary conditions	
CTRL	HRES	HRES	1
INDE	10 EDA members HRES		10
BDDE	HRES	10 EDA members	10
INBDDE	10 EDA members	10 EDA members	10

Mathematical methods

The systematic bias is defined as: bias = $\frac{\sum_{i=1}^{n} (c_{im} - c_{iobs})}{m}$

RMSE is defined as:
$$RMSE = \sqrt{\frac{\sum_{i=1}^{n} (diff(i) - bias)^2}{n}}$$

where $diff(i) = c_{im} - c_{iobs}$

The ensemble efficiency (EE) is defined as:

$$EE = \frac{RMSE_{ens} - RMSE_{CTRL}}{RMSE_{CTRL}} \times 100\%$$

where, $RMSE_{CTRL}$ refers to the computed RMSE in CTRL, $RMSE_{ens}$ refers to $RMSE_{INDE}$, or $RMSE_{BDDE}$ and $RMSE_{INBDDE}$ when we compute EE for INDE, BDDE, INBDDE, respectively.

- Introduction
- Case analysis
- Experiment design
- Model verification and ensemble results
- Summary

www.lasg.ac.cn

Model verification: CTRL run

Daily mean PM2.5 and 10-m wind

CTRL run reproduces the overall life cycle of the haze event over BTH region.

Model verification: CTRL run

 $PM_{2.5}$ Mass Concentration ($\mu g/m^3$)

Initial condition analysis: V10 & U10 at 00UTC25Nov

V10

21

PM_{2.5}: CTRL VS INDE (Initial condition ensemble)

PM_{2.5}: CTRL VS BDDE (LBCs ensemble)

28Nov

02Dec 23

PM_{2.5}: CTRL VS INBDDE (Initial and LBCs ensemble)

Regression Analysis

Near surface meteorological factors

Variable	Number of samples	Expt	bias	R	RMSE	EE
ΡΜ _{2.5} (μg/m³)	1337	CTRL	-77.95	0.49	124.23	0
		INDE	-81.20	0.52	118.86	-4.33%
		BDDE	-83.32	0.55	115.65	-6.91%
		INBDDE	-87.63	0.56	113.75	-8.44%
RH2M (%)	1337	CTRL	-7.24	0.78	13.38	0
		INDE	-7.84	0.79	13.23	-1.10%
		BDDE	-6.85	0.78	13.47	0.70%
		INBDDE	-7.48	0.79	13.49	0.81%
T2M (°C)	1336	CTRL	0.26	0.83	2.04	0
		INDE	0.41	0.83	2.01	-1.20%
		BDDE	0.24	0.83	2.04	0.13%
		INBDDE	0.37	0.83	2.04	0.03%
WS10 (m/s)	1336	CTRL	1.31	0.61	1.47	0
		INDE	1.32	0.62	1.46	-0.75%
		BDDE	1.29	0.64	1.48	0.56%
		INBDDE	1.30	0.64	1.50	2.32%
WD10 (°)	1336	CTRL	-16.84	0.26	133.29	0
		INDE	-18.89	0.27	126.37	-5.19%
		BDDE	-14.74	0.29	121.45	-8.89%
		INBDDE	-15.73	0.29	120.49	-9.61%

Difference field between INBDDE and CTRL

Difference field between INBDDE and CTRL

- Introduction
- Case analysis
- Data and experiment design
- Model verification and ensemble results
- Summary

- WRF-Chem reproduces the overall life cycle of the haze event over BTH region but fails to capture the large fluctuations of PM_{2.5} concentration in the eight selected cities.
- In general, the ensemble experiments can improve the simulation skill of PM_{2.5} concentration in this case, especially in INBDDE runs.
- 10-m wind direction (-5.19%, -8.89% and -9.61%) seem to be the dominant reason for the improvement of PM_{2.5} in ensemble runs.

Thanks !

hongboliu@mail.iap.ac.cn

X. Li, H. Liu*, Z. Zhang, and J. Liu, Numerical simulation of an extreme haze pollution event over North China Plain based on initial and boundary condition ensembles. Atmospheric and Oceanic Science Letters, in press.