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An International Cooperative Air Quality Field Study in Korea 
The KORUS-AQ field study was conducted in South Korea during May-June, 
2016. The study was jointly sponsored by NASA and Korea’s National 
Institute of Environmental Research (NIER). 
The primary objectives were to investigate the factors controlling air 
quality in Korea (e.g., local emissions, chemical processes, and 
transboundary transport) and to assess future air quality observing 
strategies incorporating geostationary satellite observations. 

» KORUS-AQ DOI: 10.5067/Suborbital/KORUSAQ/DATA01

The Geostationary Ocean Color Imager (GOCI) was loaded on the Communication, 
Ocean and Meteorological Satellite (COMS) of South Korea which was launched in 
June, 2010. It acquires data in 8 spectral bands (6 visible, 2 NIR) with a spatial 
resolution of about 500 m around the Korean Peninsula 8 times a day until now.

http://doi.org/10.5067/Suborbital/KORUSAQ/DATA01


Background on the AOD assimilation

vAerosol Optical Depth (AOD) assimilation has both positive and negative impact 
on the forecast of surface pm2.5 concentrations (Schwartz et al. 2012; Saide et al. 
2014; Pang et al. 2018)
ØHard to represent/match PM2.5 concentrations at ground stations with AOD retrievals
ØCorrelations between AOD and ground PM2.5 concentrations are not very high
ØSystematic error in the AOD retrievals (errors associated with cloud contamination effects)
ØThe GOCART mechanism in WRF/Chem tends to underestimate the surface PM2.5 (due to the 

lack of secondary organic aerosol (SOA) formation, nitrate, and ammonium)
ØConcurrent assimilation of MODIS AOD retrievals and surface PM2.5 improved aerosol 

forecasts, but still underestimated surface PM2.5.



A forecast model – WRF-Chem V3.9.1

• Online coupled between meteorology and chemistry

• One-way nesting in 27- and 9-km domains

D1: 175 x 127 on 27 km resolution

D2: 97 x 136 on 9 km resolution

Total of 31 vertical levels up to 50hPa

• Lin microphysics, RRTMG longwave, Goddard shortwave radiation, Noah LSM, YSU 

PBL, Grell-3 cumulus schemes

• MOZART chemistry and GOCART aerosol schemes

• Anthropogenic emission: EDGAR-Hemispheric Transport of  Air Pollutants (HTAP) V2 

• Phot_opt = 3; Madronich F-TUV photolysis 

• MEGAN biogenic emissions 

• The Fire Inventory from NCAR (FINN) biomass burning emissions 

• Feedback from the aerosols to the radiation schemes is on

D1

D2



Observations

• Aerosol observations for May 1 – 31, 2016 during the KORUS-AQ period
• Surface data: Hourly surface particulate matter (PM2.5) concentrations over Korea 

(AirKorea; 361 stations) and China (CNEMC;~950 stations) 
• Satellite data: Aerosol optical depth (AOD) retrievals from Moderate Resolution 

Imaging Spectroradiometer (MODIS) AQUA and TERRA, and Geostationary Ocean 
Color Imager (GOCI) Level II data at 550 nm wavelength

D1

D2



Surface PM observations vs. GOCI AOD retrievals

Cycling period (May 2016)



GOCI AOD retrievals

ØMonitoring the East Asian region hourly from 00 to 08 UTC every day
ØLevel II data @ 6 km resolution 

=> preprocessed over 27-km grids – GSI became 25x faster than thinning
ØObservation error assignment based on Choi et al. (Atmos. Meas. Tech., 2018)

As part of data quality control (QC), observations greater than 200 µg/m3 were not assimilated and observations producing

innovations ((o-f)’s) that exceed 100 µg/m3 were also discarded during the analysis step.

Observation error is composed of measurement error (✏o) and the representative error (✏r) caused by the model grid spacing

(e.g. ✏pm2.5
=

p
✏o2 + ✏r2). Following Elbern et al. (2007) and Schwartz et al. (2012), observation error for surface PM2.5

increases with the observed PM2.5 value (xo) as ✏o = 1.5+0.0075⇤xo. The representative error is formulated as ✏r = �✏o
q

�x
L5

where � is 0.5, �x is grid spacing (here, 27 km for domain 1 and 9 km for domain 2) and the scaling factor L is defined as 3

km. Based on this formula, observation error (✏pm2.5
) ranges from 2.0 to 3.2 µg/m3 in domain 2, and the error of 2.48 µg/m3

is assigned to the PM2.5 observation of 50 µg/m3, for example. In this 3DVAR analysis, observation errors are considered to

be uncorrelated so that the observation error covariance matrix R becomes diagonal.

During the 6-h cycling, all the surface observations within ±1 h at each analysis time were assimilated without further10

adjustment of observation error.

3.2.2 AOD retrievals

Figure 2 depicts a scatter diagram of GOCI AOD retrievals at 550 nm and surface PM2.5 observations that are co-located in

each model grid box in domain 1. Only the assimilated observations for the entire month of May 2016 are plotted in this figure,

which shows a low correlation between the two observation types with the linear regression coefficient of 0.33.15

✏land = 0.073+0.137⌧A ✏ocean = 0.037+0.185⌧A (3)

4 Results

4.1 Observation preprocessing

4.2 Observation impact

It is important to be able to accurately predict exceedance and non-exceedance events in the categorical predictions. Fig. 1420

presents the categorical evaluations

Overall_Accuracy(%) =
a1+ b2+ c3+ d4

N
⇥ 100 (4)

High_Pollution_Accuracy(%) =
c3+ d4

III + IV
⇥ 100 (5)

25

Overestimation(%) =
b1+ c1+ c2+ d1+ d2+ d3

N
⇥ 100 (6)
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An analysis system – GSI 3DVAR (Version 3.5)

• Given the model variable (x) for the corresponding observation y, the cost function 
J(x) is minimized w.r.t. the initial condition x0.[13] Aerosol LBCs represented clean oceanic conditions.

Mixing ratios at the lateral boundaries of the 14 speciated
WRF-Chem/GOCART aerosol variables were assigned near
zero values, while boundary values for the unspeciated con-
tributions to PM2.5 (P) equaled 1.0 mg/kg below 1-km and
decreased exponentially with height to 0.1 mg/kg at the
model top. Anthropogenic emissions of SO2, primary PM2.5,
and hydrophobic OC and BC were based on the weekday U.
S. EPA NEI-2005 emissions inventory [U.S. Environmental
Protection Agency, 2010]. The gridded (4-km resolution)
and point source hourly emission files used here are available
at ftp://aftp.fsl.noaa.gov/divisions/taq/emissions data. More
details and evaluations of the inventory are found in Kim
et al. [2011]. Emissions of dust and sea-salt were parame-
terized within the GOCART model [Chin et al., 2002].
[14] The aerosol DA system is now described.

2.2. GSI 3DVAR DA System
[15] NCEP’s GSI 3DVAR DA system was used to assim-

ilate both AOD and surface PM2.5 observations. A 3DVAR
system calculates a best fit “analysis” considering two
sources of initial information: observations at irregularly
spaced points and a gridded background (or “first-guess”)
field, typically taken from a short-term model forecast.
Associated with the background and observations are their
error characteristics. Given the background, observations,
and errors, the analysis vector (x) can be determined by

minimizing a scalar cost-function J(x) given by

J xð Þ ¼ 1
2

x$xbð ÞTB$1 x$xbð Þ þ 1
2
H xð Þ $ y½ 'TR$1 H xð Þ $ y½ ';

ð1Þ

where xb denotes the background vector, y is a vector
of observations, and B and R represent the background
and observation error covariance matrices, respectively. The
covariance matrices determine how closely the analysis is
weighted toward the background and observations. H is the
potentially nonlinear “observation operator” that interpolates
model grid point values to observation locations and trans-
forms model-predicted variables to observed quantities.
[16] Both the background and analysis are vectors com-

prised of “analysis variables” (or “control variables”). While
a model might predict tens or even hundreds of prognostic
variables, only the analysis variables are updated during
DA. For meteorological assimilation the analysis variables
typically are 3D wind, temperature, and moisture fields.
However, here, the analysis variables were the 3D mass
mixing ratios of the 15 WRF-Chem/GOCART aerosol vari-
ables at each grid point. This choice of variables was sim-
ilar to LIU11, but LIU11 analyzed just the 14 speciated
WRF-Chem/GOCART variables and did not include P as a
control variable. P was introduced into the analysis vector
here as it is an important contributor to PM2.5. This speciated
approach to aerosol DA within a variational system was a

Figure 1. Computational domain overlaid with model topography (m). Small open circles depict loca-
tions of AIRNow sites used for PM2.5 assimilation and large filled dots indicate AERONET sites used
for AOD verification. The AIRNow sites were also used to verify PM2.5 forecasts, except verification
did not occur at the AIRNow sites within the boxed region, referred to as the “excluded region” (see
section 6.2.1).
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2.1. WRF-Chem Model Configurations

Version 3.3.1 of the WRF-Chem model
[Grell et al., 2005] was used to predict aerosol
transport. In WRF-Chem, the chemical and
meteorological components are fully
coupled, and aerosol direct and indirect
effects through interaction with radiation,
photolysis, and microphysical processes are
allowed for certain combinations of aerosol
and physical options.

As in S12, the GOCART was employed as
the aerosol option within WRF-Chem, and
gaseous chemical transport was not
simulated. When the GOCART is chosen as
the aerosol module within WRF-Chem,
forecasts of 3-D mass mixing ratios of 14
defined aerosol species plus a 15th variable
representing unspeciated aerosol
contributions to PM2.5 are produced (Table 1).

Many processes regarding the aerosol variables’ evolution are represented, including emission, advection,
convection, diffusion, dry deposition, and wet deposition, as well as chemical reactions using prescribed OH,
H2O2, and NO3 fields for SO2 and dimethyl sulfide oxidations [Chin et al., 2002].

This study focuses on aerosol analyses and WRF-Chem forecasts over a CONUS-spanning domain (Figure 1)
with 20 km horizontal grid spacing. There were 41 vertical levels, and the model top was 50 hPa. The physical
parameterizations [see Skamarock et al., 2008, and references therein] employed in WRF-Chemwere identical
to those of S12 and are listed in Table 2.

Table 1. Descriptions and Abbreviations of the 15 GOCART
Aerosol Variables Considered in This Study

Description
Abbreviation Used in

Figures 9 and 10

Sulfate Sulfate
Hydrophobic organic carbon OC1
Hydrophilic organic carbon OC2
Hydrophobic black carbon BC1
Hydrophilic black carbon BC2
Sea salt with effective radius 0.3μm
for dry air

SeaSalt1

Sea salt with effective radius 1.0μm
for dry air

SeaSalt2

Sea salt with effective radius 3.25μm
for dry air

SeaSalt3

Sea salt with effective radius 7.0μm
for dry air

SeaSalt4

Dust with effective radius 0.5μm Dust1
Dust with effective radius 1.4μm Dust2
Dust with effective radius 2.4μm Dust3
Dust with effective radius 4.5μm Dust4
Dust with effective radius 8.0μm Dust5
Unspeciated contributions to PM2.5 P25

Figure 1. Computational domain overlaid with model topography (m). Small open circles depict locations of AIRNow sites
used for PM2.5 assimilation and verification. Numbers denote AERONET sites used for verification in Figure 18. Sites 6 and 24
were clustered around Los Angeles, California, and sites 8, 11, 16, 21, and 26 were all near Baltimore, Maryland.

Journal of Geophysical Research: Atmospheres 10.1002/2013JD020937

SCHWARTZ ET AL. ©2014. American Geophysical Union. All Rights Reserved. 4045

Schwartz et al. 2014 (JGR-A)

Observation operator, H(x), for AOD data, is based on the 
community radiative transfer model (CRTM), as in Liu et al. (2011).  



Analysis/forecast cycling

• Regional cycling using WRF-Chem/GSI 3DVAR analysis w/ ± 1h assim. window

• KORUS-AQ period (May 1 – 31, 2016) cycling every 6h

• One-way nesting in 27- and 9-km domains (for both analysis and forecast)

• Meteorological initial and lateral boundary conditions from UM forecasts

• Chemical initial and boundary conditions from MOZART-4 output (mozbc)

• Static background error covariance estimates using 48-24h forecast error (the 

NMC method; Parrish and Derber, 1992); univariate error covariance for 15 

GOCART aerosol species

• 24h forecasts from the 00 UTC analysis every day



Observation impact on the analysis of PM2.5 



Impact of aerosol data assimilation (rmse/bias for all events in May 2016)

Ø Initialized from the 00Z analysis every day, for the period of May 3 – 31, 2016.
Ø The assimilation of ground PM observations tends to underestimate the surface PM forecasts. 
Ø AOD assimilation alone overestimates surface PM.
Ø When assimilated with surface PM observations, however, GOCI and MODIS AOD retrievals are 

effective in improving surface PM forecasts for 24h.



Impact of aerosol data assimilation (categorical forecasts)Figure 2. Scatter plots of GOCI AOD retrievals versus (upper) PM10 and (lower) PM2.5 observations at the surface for the month of May

2016 over domain 2. The value of R2 indicates the correlation coefficient between the two observation types based on the linear regression

shown as the red line in each panel.

Table 3. Categorical forecasts for different air pollution events

Category
Forecast

Good Moderate Unhealthy Very Unhealthy

Observation

Good a1 b1 c1 d1

Moderate a2 b2 c2 d2

Unhealthy a3 b3 c3 d3

Very Unhealthy a4 b4 c4 d4

I

II

III

IV

7

Figure 1. Model domains (outer one for domain 1 at 27-km and the inner box for domain 2 at 9-km resolution. Dots indicate the surface

observing network with 960 Chinese stations and 361 Korean NAMIS stations.

Table 2. Air quality index values

Concentration (µg/m3, hourly) Good Moderate Unhealthy Very Unhealthy

PM10 0-30 31-80 81-150 > 150

PM2.5 0-15 16-50 51-100 > 100
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Model of Emissions of Gases and Aerosols from Nature (MEGAN) version 2. Chemical initial and boundary conditions are

provided from MOZART-4 converting to the WRF fields before running GSI 3DVAR analysis every 6h cycle. Every 6 h, the

initial meteorological fields of all four experiments were updated by interpolating 20-km NAM analyses onto the computa-

tional domain. No meteorological DA was performed. Thus, the initial meteorology was the same for each experiment, and the

experiments only differed regarding the type of aerosol observations (if any) that were assimilated, permitting a clear isolation5

of the impact of aerosol DA on WRF-Chem forecasts.

4 Results

4.1 Observation preprocessing

4.2 Observation impact

Overall_Accuracy(%) =
a1+ b2+ c3+ d4

N
⇥ 100 (1)10

High_Pollution_Accuracy(%) =
c3+ d4

III + IV
⇥ 100 (2)

Overestimation(%) =
b1+ c1+ c2+ d1+ d2+ d3

N
⇥ 100 (3)

15

Underestimation(%) =
a2+ a3+ a4+ b3+ b4+ c4

N
⇥ 100 (4)

where I = (a1+ a2+ b1+ b2) (colored in light blue) , II = (c1+ c2+ d1+ d2) (in orange), III = (a3+ a4+ b3+ b4) (in

pink), and IV = (c3+ c4+ d3+ d4) (in light green).

4.3 A heavy pollution case

5 Conclusions and discussion20

There are several major limitations in this study. First, the simple GOCART aerosol scheme is well known for the underes-

timation of air pollutants due to the lack of the aerosol size distribution and the SOA formation. We had to use the scheme

for the assimilation of AOD retrievals since the observation operator for AOD was only built in the GOCART scheme in

the GSI system. As demonstrated in the present study, GOCI retrievals have positive impact on improving short-range air-

quality forecasts, and it would be beneficial to make best use of satellite data through assimilation, we may need to develop25

or improve the observation operator for AOD to be applied to more sophisticated aerosol schemes in the near future. Next,

as there is no cross-covariance between aerosol and meteorological variables considered in the background error covariance
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Summary

vGOCI AOD retrievals are preprocessed and assimilated in WRF-Chem/GSI 3DVAR 
using MOZART/GOCART schemes during the KORUS-AQ period (May 2016).

vGOCI AOD retrievals help improving surface PM2.5 forecasts up to 24h when 
assimilated with ground PM observations. 

vGOCI AOD is particularly helpful for predicting heavy polluted events.

vAerosol assimilation improves air-quality forecasting over Korea with the mean 
absolute error (MAE) of 24h forecasts reduced by ~21% in surface PM2.5.



Future plan

Switching to WRFDA, we develop new observation operators H(x) for surface PM and 

chemical observations (such as O3, SO2, CO, NO2) for new chemistry/aerosol schemes. 

328 V. Aquila et al.: The new aerosol microphysics submodel MADE-in

Fig. 1. Schematic representation of the aerosol distribution in MADE-in. BC indicates black carbon, POM particulate organic matter, SS sea
salt and DU dust. The shaded mode is the coarse mode, which does not interact with the sub-micrometer modes. The black line depicts the
fine modes without BC and dust, the red line the modes for externally mixed BC and dust particles and the blue line the modes for internally
mixed BC and dust.

2.1.1 Representation of the aerosol population

MADE-in represents the aerosol number concentration by
a superposition of seven log-normal modes. The particle
number concentration n(D) within each mode follows a log-
normal distribution:

n(D) = dN

dD
= Ntp

2⇡D ln�g
exp

"

� (lnD� lnDg)
2

2ln2�g

#

, (1)

where Nt is the total number concentration of the mode, Dg
the median diameter and �g the geometric standard devia-
tion. A detailed description of the modal approach can be
found in Whitby and McMurry (1997). Each of the seven
modes describes a different type of particles, characterized
by particle size, composition and mixing state (Fig. 1). The
seven MADE-in modes are:

– an Aitken mode (aknsol) for internally mixed soluble
particles. aknsol particles are composed of SO4, NH4,
NO3, POM and water;

– an accumulation mode (accsol) for internally mixed sol-
uble particles. accsol particles are composed of SO4,
NH4, NO3, POM, water and sea salt;

– an Aitken mode (aknext) for BC particles without or
with only a thin soluble coating, following the defini-
tion given in Sect. 2.2. Particles with a thin coating
probably show similar hygroscopic properties as exter-
nally mixed particles (Weingartner et al., 1997; Khali-
zov et al., 2009). Therefore we generally refer to these
particles as externally mixed BC particles. The coating
is composed of the same species as present in aknsol;

– an accumulation mode (accext) for particles composed
of BC and mineral dust without or with a thin soluble
coating (externally mixed BC and dust). The coating is
composed of the same species as present in accsol;

– an Aitken mode (aknmix) for BC particles with a thick
coating. We refer to these particles as internally mixed
BC particles;

– an accumulation mode (accmix) for BC and dust parti-
cles with a thick coating (internally mixed BC and dust
particles);

– a coarse mode (cor) for particles typically larger than
about 1 µm and composed of water, sea salt and dust.

Similarly to MADE, the Aitken modes typically contain
particles smaller than 100 nm and the accumulation modes
have a typical size range of 100 nm to 1 µm. The size range
of one mode is not fixed, and can change due to microphysi-
cal processes. The growth of particles, for instance, shifts the
diameter of the modes towards larger values. The nucleation
of many small particles shifts the mode to smaller diame-
ters. Aerosol mass and number can be transferred among the
6 sub-micrometer modes. If, for instance, Aitken mode parti-
cles grow into the size range of the accumulation mode, a part
of the mass and number concentration of the Aitken mode is
transferred to the accumulation mode. If externally mixed
BC or dust particles acquire a soluble coating large enough
to become internally mixed, they are transferred to the inter-
nally mixed modes with BC and dust. As MADE, MADE-in
simulates the evolution of the coarse mode independently of
the sub-micrometer modes, in order to reduce the computa-
tional demand. Within an individual mode, it is assumed that
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