# A new scale-aware 3DTKE scheme

We have developed a scale-aware parameterization scheme based on the general form of the TKE equation in the WRF model to simulate 3D subgrid turbulent mixing; The scheme holds the promise of making the transition between the mesoscale and LES limits smooth, not only in the amount of subgrid mixing, but also in the parameterization formula.

### Starting point of our development in WRF

$$\overline{u_i'u_j'} = -K_{ij}^M \left( \frac{\partial \overline{u_i}}{\partial x_j} + \frac{\partial \overline{u_j}}{\partial x_i} \right) + \overline{u_i'u_j'}^{NL} \quad (i \neq j)$$
$$\overline{u_i'\theta'} = -K_{ij}^H \frac{\partial \overline{\theta}}{\partial x_j} + \delta_{i3} \overline{u_i'\theta'}^{NL}$$
$$K^M = Ce^{1/2} l$$

$$\frac{\partial e}{\partial t} = \overline{u}_{j} \frac{\partial e}{\partial x_{j}} - \overline{u_{i}' u_{j}'} \frac{\partial \overline{u}_{i}}{\partial x_{j}} + \frac{g}{\overline{\theta_{0}}} \overline{w' \theta'} - \frac{\partial \overline{u_{i}' (e + p' / \rho_{0})}}{\partial x_{i}} - \varepsilon$$

Minimal requirements for extending the 3D TKE LES subgrid model to the mesoscale limit include the three key elements:

- The nonlocal fluxes;
- The mixing length scales;
- Horizontal diffusion parameterization.

### Nonlocal heat flux

Conditional sampling based on LES data  $\overline{w'\theta'} = a\overline{w'\theta'}^c + (1-a)\overline{w'\theta'}^e + a(1-a)(w_c - w_e)(\theta_c - \theta_e)$  $\overline{w'\theta'}^{NL} = a(1-a)(w_c - w_e)(\theta_c - \theta_e)$ In mesoscale limit, the nonlocal heat flux gradually coverges to a single profile (compare the profiles at resolutions 3km and 9km)



Vertical profile of SGS nonlocal heat flux for different resolutions normalized by surface heat flux.

### Mixing length scale

In the LES limit, Deardorff's length scale is applied:

$$l_{LES} = \begin{cases} \min \left[ 0.76e^{1/2} \left| \frac{g}{\theta} \frac{\partial \theta}{\partial z} \right|^{-1/2}, \Delta s \right] & \text{for } N^2 > 0 \\ \Delta s & \text{for } N^2 \le 0 \end{cases}$$
$$\Delta s = (\Delta x \Delta y \Delta z)$$

1/3

In the mesoscale limit, following MYNN Level-3 scheme, the vertical length scale is given as:

$$\frac{1}{l_{MESO}} = \frac{1}{l_S} + \frac{1}{l_T} + \frac{1}{l_B}$$

 $l_S$  is the length scale in the surface layer controlled by the effects of wall and stability,  $l_T$  the length scale depending on the turbulent structure of the PBL and  $l_B$  the length scale limited by the thermal stability.

#### Scale-aware transition between LES and mesoscale limit

$$\overline{w'\theta}^{\Delta x} = -K_{II}^{\Delta x} \frac{\partial \overline{\theta}}{\partial z} + \overline{w'\theta}^{\Delta x,NL} = \overline{w'\theta}^{\Delta x,L} + \overline{w'\theta}^{\Delta x,NL}$$

$$\overline{w'\theta}^{\Lambda x,NL} = \overline{w'\theta}^{NL} P_{NL}(\Delta x/z_i) \quad \overline{w'\theta}^{\Lambda x,L} = -K_{\Delta x}^{H} \frac{\partial \overline{\theta}}{\partial z}^{\Lambda x} \qquad \text{Weighting function}$$

$$K_{\Delta x}^{H} = C_{vertical} l_{\Delta x} e^{1/2}$$

$$l_{\Delta x} = P_{L}(\Delta x/z_{i}) l_{MESO} + [1 - P_{L}(\Delta x/z_{i})] l_{LES}$$

$$\bigcup_{0.01}^{0.01} \bigcup_{0.1}^{0.01} \bigcup_{0.01}^{0.01} \bigcup_{0.01}^$$



$$K_{h} = K_{D} + K_{T}$$
  
=  $P_{L}(\Delta x/z_{i})(C_{s}\Delta)^{2}D/\sqrt{2} + [1 - P_{L}(\Delta x/z_{i})]C_{k}le^{1/2}$ 

 $K_D$  is the diffusivity based on the deformation (2D Smag).  $K_T$  is the diffusivity based on the 1.5-order TKE.

# **Improvements on numerics**

- We have found that the new scale-aware 3DTKE scheme can be unstable when it is used in mesoscale simulations in which dx,dy>>dz (highly anisotropic grid).
- To make the model stable, I have used the implicit method instead of original explicit method to solve the TKE equation and model diffusion equations.

$$\frac{\partial e}{\partial t} + \overline{U_j} \frac{\partial e}{\partial x_j} = -(\overline{u_i'u_j'}) \frac{\partial \overline{U_i}}{\partial x_j} + \delta_{i3} \frac{g}{\overline{\theta_v}} \overline{u_i'\theta_v'} - \frac{1}{\overline{\rho}} \frac{\partial(\overline{p'u_i'})}{\partial x_i} - \frac{\partial(u_j'e)}{\partial x_j} - \varepsilon$$
$$e_k^{n+1} - e_k^n = \Delta t \left( D_h - A_h + P \right)_k^n + \Delta t \left( D_v - A_v - \frac{c_e e^{1/2}}{l} e \right)_k^{n+1}$$

## A real case of fair weather From: 2016.08.29.08 To: 2016.08.30.08

# D01:3km D02:1km D03:500m

3km: GFS analysis 1km: ndown from 3km output 500m: ndown from 1km output







-1.5 -1.2 -0.9 -0.6 -0.3 0 0.3 0.6 0.9 1.2 1.5 1.8 2.1

# 250-m resolution visible MODIS-*Terra* image at 02:40 UTC 29 Aug 2016



#### Vertical profiles of simulated potential temperature at 0500 UTC 29 Aug 2016 for the Station Baoshan (31.40°N, 121.45 °E)





500m

### Operational NWP system in SMS (Shanghai Meteorological Service)



**SMS-WARMS (WRF-ADAS Realtime Modeling System)**: 9km resolution, WRF3.5.1+ADAS 5.3.3, 72h prediction **SMS-WARR(WRF-ADAS Rapid Refresh System)**: 3km resolution, cooling starting at 02 am (local time), doing data assimilation every hour, and making 12-hour prediction, boundary condition from 9km system



# Precipitation event in Meiyu front on 9 June 2017

Init: 2017-06-09 00:00:00

Valid: 2017061008



24-hour Total Precipitation : 2017060908 TO 2017061008 3DTKE (mm)



100 250 500

100 250 500

### 24h precipitation forecast in SMS-WARMS with 9km resolution

SMS-WARMS (2nd) Prediction

40°N

24-hour Total Precipitation : 2017060908 TO 2017061008 YSU (mm)

Init: 2017-06-09 00:00:00

Valid: 2017061008



.1 10 25

.1

SMS-WARMS (2nd) Prediction







SMS-WARMS (2nd) Prediction

Init: 2017-06-09 00:00:00 Valid: 2017061008

24-hour Total Precipitation : 2017060908 TO 2017061008 MYJ (mm)



50 100 250 500



### **Threat Score of precipitation**



#### 24h and 48h precipitation forecast with 9km WARMS

# km\_opt in WRF namelist

km\_opt selects method to compute K

- 1: constant (khdif and kvdif used)
- 2: 1.5-order TKE prediction (Deardorff's model, usually used in
- LES, not recommended for dx > 2 km, not appropriate for meso)
- 3: 3D Smagorinsky (usually used in LES)
- 4: 2D Smagorinsky (for horizontal diffusion only, this option is most often used with a PBL scheme)

— 5: New scale-aware 3DTKE scheme (SMS-3DTKE). This option extends original Deardorff's model (km\_opt =2) to the mesoscale, and can be used in LES, mesoscale and the gray zone in between. In the horizontal diffusion, the new scheme blends 2D Smag (km\_opt = 4) and TKE-based K (km\_opt=2). In mesoscale limit, horizontal diffusion is recovered to 2D Smag (km\_opt=4). The new scheme can replace option 2 and convectional PBL schemes. In LES limit, option 5 is recovered to option 2. Thus, option 5 unifies all diffusion effects into one framework. bl pbl physics = 0

# Thank you for your attention!

Zhang X., Jian-Wen Bao, Baode Chen and Evelyn D. Grell, 2018: A Three-Dimensional Scale-adaptive Turbulent Kinetic Energy Model in ARW-WRF Model. *Mon. Wea. Rev. DOI:10.1175/MWR-D-17-0356.1* 



## Free atmosphere diffusion

The length scale at a given level is determined as a function of stability profile of the adjacent levels. The algorithm relies on the computation of the maximum vertical displacement allowed, for a parcel of air having the mean kinetic energy of the level as initial TKE.

$$\int_{z}^{z+l_{up}} \frac{g}{\theta_0} \left( \theta(z') - \theta(z) \right) dz' = e(z)$$

$$\int_{z-l_{down}}^{z} \frac{g}{\theta_0} \left( \theta(z) - \theta(z') \right) dz' = e(z)$$

$$l = \min(l_{up}, l_{down})$$

The BouLac mixing length is blended with MYNN length scale in a transition layer above PBL.

e l l l down

Bougeault-Lacarrere (1989)

#### The calculation of TKE in new scheme is not only confined in PBL.

#### The differences of 3DTKE compared to conventional PBL schemes

$$\frac{\partial e}{\partial t} + \overline{U_{j}} \frac{\partial e}{\partial x_{j}} = -(\overline{u_{i}'u_{j}'}) \frac{\partial \overline{U_{i}}}{\partial x_{j}} + \delta_{i3} \frac{g}{\overline{\theta_{v}}} \overline{u_{i}'\theta_{v}'} - \frac{1}{\overline{\rho}} \frac{\partial(\overline{p'u_{i}'})}{\partial x_{i}} - \frac{\partial(\overline{u_{j}'e})}{\partial x_{j}} - \varepsilon$$

$$-(\overline{u_{i}'u_{j}'}) \frac{\partial \overline{U_{i}}}{\partial x_{j}} = -\overline{u'^{2}} \frac{\partial \overline{u}}{\partial x} - \overline{u'v'} \frac{\partial \overline{u}}{\partial y} - \overline{u'w'} \frac{\partial \overline{u}}{\partial z}$$

$$-\overline{v'u'} \frac{\partial \overline{v}}{\partial x} - \overline{v'^{2}} \frac{\partial \overline{v}}{\partial y} - \overline{v'w'} \frac{\partial \overline{v}}{\partial z}$$

$$-\overline{w'u'} \frac{\partial \overline{w}}{\partial x} - \overline{w'v'} \frac{\partial \overline{w}}{\partial y} - \overline{w'^{2}} \frac{\partial \overline{w}}{\partial z}$$

1. The 3DTKE scheme uses the complete form of TKE prognostic equation without any approximations;

2. The advection of TKE is calculated in the model dynamics framework, which insures the numerical consistency between subgrid mixing and model dynamics.

#### The differences of 3DTKE compared to conventional PBL schemes

 The 3DTKE scheme combines the horizontal and vertical subgrid turbulent mixing into a single energetically consistent framework;
 The 3DTKE scheme includes the tendency from subgrid mixing in vertical velocity equation. In hydrostatic model, there is no prognostic equation of vertical velocity.