2019 Joint WRF/MPAS Users' Workshop 13 June 2019 Boulder, CO

Evaluation of HRRR Boundary Layer Structure

Robert Fovell

University at Albany rfovell@albany.edu

Available surface stations

Includes low quality stations (cf. Fovell and Gallagher 2018)

Available ASOS stations

N > 800

Available ASOS stations

2-month average

4

Available ASOS stations

Available high-frequency radiosondes

Much fewer observations Only twice per day Much more difficult to handle

Analysis

- Operational HRRR analyses and forecasts on native model levels from NCEP ["best"]
- High-frequency radiosonde observations from NCEI [1 second obs ~ O(10 m) Δz]
- April 2019 as an example
- Analysis and 24-h forecasts from 00Z and 12Z model runs

Forecast drift

Forecast drift ≠ forecast bias

Forecast drift ≠ forecast bias

April 2019 24-h forecast drift (60 radiosonde sites)

NO OBSERVATIONS DIRECTLY INVOLVED Height coordinate = average model height AGL

April 2019 24-h forecast drift (60 radiosonde sites)

NO OBSERVATIONS DIRECTLY INVOLVED Height coordinate = average model height AGL

April 2019 24-h forecast drift (all land areas)

NO OBSERVATIONS DIRECTLY INVOLVED Height coordinate = average model height AGL

24-h wind speed forecast drift: model level 1 (~10 m AGL)

24-h wind speed forecast drift: model level 6 (~430 m AGL)

24-h wind speed forecast drift: model level 5 (~276 m AGL)

24-h lapse rate forecast drift (below 1.3 km)

Forecast bias

Forecast bias

- Forecast bias = (forecast observation), averaged for each model level across 60 high-frequency radiosonde sites
- 1-sec radiosonde observations interpolated to HRRR model levels at each location and time, averaged over both
- Important and serious issues (partial list):
 - Balloon release height AGL needs to be determined
 - Discrepancies exist between actual and HRRR elevations
 - Not all releases are from ground level & not all barometer readings are from surface (worst offender: Albany, NY)
 - Pressure- and GPS-derived heights MSL do not agree
 - Pre-release observations need to be removed
 - Residual pendular motion may remain in filtered winds
 - Most balloons launched 50+ min prior to nominal times (00Z, 12Z) [Coniglio et al. 2013; Evans et al. 2018]
 - "standard" vs. "shifted" assessment

Vertical profile of wind at 60 radiosonde sites: April 2019

Analysis follows observations well, so anticipate forecasts will have high wind bias

"Kink" in observations is very persistent but may be artifact

Vertical profile of wind at 60 radiosonde sites: April 2019

STANDARD analysis: compare to 24 h forecasts

Vertical profile of wind at 60 radiosonde sites: April 2019

SHIFTED analysis: compare to 23 h forecasts

Wind speed bias 00Z

Forecast bias vs. height April 2019

temperature bias (K)

28

1

0.5

1.5

-1

1

29

1

0.5

400

200

0

temperature bias (K)

-0.5

-1

400

200

0

wind speed bias (m/s)

0.5

-0.5

-1.5

Summary

- 24-h forecast drift April 2019:
 - Wind speed increases both day and night (robust)
 - Nocturnal stability decreases near surface
- Radiosonde comparison indicates analysis possesses less bias
- Further analysis suggests fast wind bias emerges quickly & occurs in other months
- Sources of errors/differences: PBL mixing magnitude and depth, surface layer, land surface model, microphysics, clouds & radiation, and larger-scale contributions etc..

HRRR forecast drift: Jan-May 2019

HRRR 24-h forecast drift: Jan-May 2019

NO OBSERVATIONS DIRECTLY INVOLVED but analysis bias < forecast bias

HRRR forecast drift: Jan-May 2019

HRRR 24-h forecast drift: Jan-May 2019

NO OBSERVATIONS DIRECTLY INVOLVED but analysis bias < forecast bias

NAM forecast drift: Mar-May 2019

NAM 24h fcst drift over land: Mar-May 2019

10000 8000 height MSL (m) 6000 4000 2000 -0.6 -0.4 -0.2 0.2 0.4 0.6 0.8 0 average change (m/s or K) 12Z wind avg — 12Z T avg Series5 Series3

> NAM data on pressure levels; Heights are MSL

Near-surface wind speed difference @ 18Z

Limited non-HRRR PBL experiment

PBL positive wind bias probably not mixing since it is so deep

[end]

Observation height discrepancies

GPS instrument generally gives lower height estimate

NAM 24h forecast drift over land: May 2019

Comparison with observations

- Standard assessment
 - 00Z & 12Z observations compared to 24 h forecasts
 - Ignores temporal shift
- Shifted assessment
 - 00Z & 12Z observations compared to 23 h forecasts
 - May overcompensate for temporal shift
- This presumes the *analysis* has properly incorporated the sonde observations