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Recent Model Development Focus

• Efficiency and usability 
• Some schemes, like urban and lake, have 

poor memory management and therefore 
can be of limited use

• Code consolidation
• Model version proliferation
• Different Noah-MP versions in multiple 

systems



Urban Memory Cleanup

DESCRIPTION OF CHANGES:

Multi-layer urban models pack 4D, 5D, and 6D arrays into 3D. The old code used one 
dimension (num_urban_layers) which depends on the largest 6D array. The new code 
creates separate mapping for the different urban arrays so that the arrays are 
maximally filled for each urban array.

Compared to the original code, the memory cost (relative to a non-urban run) of using 
UCM is reduced from 31% to 5%, BEP from 31% to 15% and BEM from 707% to 
274%, equivalent to a 20%, 45% and 64% reduction in memory used, respectively.

When users run BEP or BEM and want to change urban model structure, the model 
will automatically adjust for memory efficiency.

num_urban_ndm: maximum number of street dimensions
num_urban_ng : number of grid levels in the ground 
num_urban_nwr: number of grid levels in the walls or roof
num_urban_ngb: number of grid levels in the ground below building
num_urban_nf: number of grid levels in the floors
num_urban_nz: maximum number of vertical levels in the urban grid
num_urban_nbui: maximum number of types of buildings in an urban class



Push NWM Noah-MP mods to WRF

DESCRIPTION OF CHANGES:

Noah-MP code within WRF and the National Water Model has diverged. This pull 
request feeds NWM development back to WRF.

LIST OF MODIFIED FILES:
M phys/module_sf_noahmpdrv.F
M phys/module_sf_noahmplsm.F
M run/MPTABLE.TBL

• add unpopulated header required by NOAA
• add BATS parameters to data structure and output band snow albedo
• updating MPTABLE for BATS albedo parameters
• add bats albedo local variables to noahmpdrv
• transfer new bats table values to parameters data structure in noahmpdrv
• add RSURF_EXP parameter to data structure and update MPTABLE
• change snow water equivalent limit to 5000mm
• assume LAI is stand LAI and doesn't need to be rescaled by FVEG
• conserve snow pack heat when layer melts completely
• change output messages and Fortran open/read unit numbers to WCOSS



BEM Air Conditioning Flexibility

DESCRIPTION OF CHANGES:

Two urban parameter tables options are added to prescribe the fraction of 
building (BLDAC_FRC) and fraction of floors in a building (COOLED_FRC) that 
have air conditioning.

By default, these fractions are set to 1.0 and answers are unchanged.

LIST OF MODIFIED FILES:
M phys/module_sf_urban.F
M phys/module_sf_bep_bem.F
M run/URBPARM.TBL



Salamanca and Martilli (2009, Theoreti. Appli. Climatol.) 
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Extending Building Energy Model (BEM)
Representing indoor-outdoor exchange
• Improve the estimate of the anthropogenic fluxes. 
• Estimate energy consumption related to meteorology (air 

conditioning and heating).



Impacts of air-conditioning energy consumption on local weather



Modeling urban human behavior 

Impacts of air-conditioning energy consumption on local weather

Specifying fraction of buildings and fraction of floors that use AC improves load forecast



Future Model Development Focus

• Agriculture Modeling
• Spatial performance of Noah-MP-Crop
• Irrigation 
• Drainage tiling

• Urban Modeling
• Solar panel options
• Parameter tables



13-km GFS 
weather and 1-km 
NWM water 
forecast at 
continental scales

Field scales

Downscale (~7 days) national GFS and NWM 
forecast to field scales (30-m)

HRLDAS (High-Resolution Land Data 
Assimilation System) to integrate 
land-surface, soil, hydrology, crop-
growth models; NASA products and 
ag management data

Field-scale Agriculture Prediction
Fei Chen, Dev Niyogi, Xing Liu, Xiaoyu Xu, Zhe Zhang, Liping Di



Stage 1: before seeding
Stage 2: emergence
Stage 3: initial vegetative 
Stage 4: normal vegetative 
Stage 5:initial reproductive
Stage 6: to physiological maturity 
Stage 7: after maturity 
Stage 8: after harvesting
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Noah-MP-Crop Model Framework



Research area and data source :

1-D offline field-scale: 
Bondville, IL (2001, 2003, 2005), corn, rainfed, half-hourly weather input.
Mead, NE     (2002, 2004, 2006), soybean, rainfed, hourly input.
Data source : Ameriflux

C: MP-CROP
D: Dynamic Vegetation
T: Table LAI 

Running model with 3 
Vegetation options: 

Noah-MP-Crop Offline Results
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Noah-MP-Crop Offline Results



• For a normal year (2013), WRF-Crop 
predicted crop yield is good in corn 
dominated regions (Iowa, Illinois, 
Indiana) near where the model was 
calibrated (right)

• Challenge: improve model 
performance beyond calibration 
region for its global applications 
using spatially varying parameters

Corn yield ratio (modeled / observed) in % for 73 
USDA zones (e.g., <100 implied underprediction)Planting Date Harvest Date Seasonal GDD

Good 
performance
Sub-optimal 
performance

WRF-Noah-MP-Crop Challenges



x-axis: days from an 
irrigation application; 

y-axis: differences in daily 
T2 and q2 between 
irrigated (USNe2) and rain-
fed (USNe3) sites for 2001-
2012. 

Chen et al. (2018, ERL)

• Irrigation significantly modifies land surface water/energy states and local/regional 
climate.

• The irrigation cooling varies with crop species.
• The irrigation application is not only determined by soil-moisture deficit, but also 

by crop growth stages.

• Q: How to represent crop-specifc irrigation (both timing and amount) in 
LSMs?

ΔT2

Δq2

maize soybean

Incorporating Irrigation for WRF-Crop



Ne LMRB

IWA

ΔT2

Δq
2

• The land surface hydrometeorological conditions over 
Nebraska and LMRB were greatly modified by irrigation.

Irrigation Effects on Atmosphere



• Using 30-meter USDA/George Mason University crop frequency data
• Using 500-meter MODIS irrigated area data
• Using state-level planting and harvest data
• Using ⅛° climate data to determine spatially-varying GDD for crop growth 

in 8 stages

• Compared to county-level yield estimates, model generally produces yield 
within 20% of observed values

• Irrigation, most notably in Nebraska, improves model estimates
Model Corn Yield Bias [%]

Expanding Input Data for Improved Spatial Performance



How to Make LCZ land use types?
According to the guide on this page http://www.wudapt.org/

Fig 1 LCZ classes. (a) LCZ1 compact high rise; (b) LCZ 2: Compact mid-rise; (c) LCZ 3: Compact low-
rise; (d) LCZ 4: Open high-rise; (e) LCZ 5: Open mid-rise; (f) LCZ 6: Open low-rise; (g) LCZ 7: Light 
weight low-rise; (h) LCZ 8: Large low-rise; (i) LCZ 9: Sparsely built; (j) LCZ 10: Heavy industry; (k) LCZ A: 
Dense trees; (l) LCZ B: Scattered trees; (m) LCZ C: Bush, scrub; (n) LCZ D: Low plants; (o) LCZ E: Bare 
rock or paved; (p) LCZ F: Bare soil or sand; (q) LCZ G: Water

Improving Urban Representation

from Yongwei Wang

http://www.wudapt.org/
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Improving Urban Representation



Moving Forward in a Modular Framework

• Expectation for major refactoring of Noah-
MP code in the near future
• Enhance/facilitate collaboration
• Ease pressure on implementation

• Need coordination and communication for 
model development
• Multiple irrigation efforts
• Multiple agriculture efforts
• Multiple dynamic root efforts
• Multiple solar panel efforts

• Limit isolated development
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The Community Land Model (CLM) key processes 
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CLM (CGD)

Noah-MP,  WRF-Hydro (RAL)

• CLM user community:

• climate focus: CESM

• national and international universities and labs

• plant hydrodynamics, carbon-nitrogen dynamics, 
ecosystem demography

The Community Terrestrial Systems Model
a unified model for research and prediction in climate, weather, water, and ecosystems

CTSM

• Noah-MP user community:

• NWP focus:  WRF, WRF-Hydro, NOAA NWC/EMC

• national and international universities and labs

• higher spatial resolution and temporal coupling 
frequency

+ user communities
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Key Challenges

• Parallel development
§ Existing models currently used 

across multiple projects
§ Initially the effort is diffuse -

partners developing code for 
both Noah-MP and CTSM 
(complicated by funding)

§ Diverse Modeling Problems
§ Climate needs vs. NWP needs
§ Land coupling with other 

components 
§ frequency of coupling
§ location of coupling
§ strong coupling, e.g., urban, ML 

canopy



• Adoption
§ Target for feature branch in v4.2
§ Development of common test 

cases to demonstrate 
performance/capabilities (e.g., 
NWP configuration)
§ Potential user defined?

§ Expand verification packages
§ Expansion of ILAMB, MET

§ Simplify coupling/ease of use 
across multiple communities

WRF, 
MPAS, or 
other atm

model 

CTSM

LILAC
Lightweight Infrastructure for 
Land-Atmosphere Coupling
Funded NSF Infrastructure project
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link?

Key Challenges



• expanding CTSM interest
• CTSM as a viable option for NOAA operational models 

(NAM,GFS,CFS,HRRR,NWM), WRF (-Hydro) [or any weather 
model], LIS/NLDAS/GLDAS

• Original results show CLM expensive relative to Noah-MP; 
makes CTSM a hard(er) sell for the resource limited

36
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6 5 4

Extension to CTSM-NWP


