

ß

Evaluating and tuning the orographic gravity wave drag scheme in the RAP model

Michael Toy^{1,2}, Joseph Olson^{1,2}, Tanya Smirnova^{1,2}, Jaymes Kenyon^{1,2}, John Brown² and Georg Grell²

Joint WRF/MPAS Users' Workshop June 13, 2019

¹ Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO

² Earth System Research Laboratory, NOAA, Boulder, CO

Gravity waves, momentum flux, and drag

Subgrid-scale orographic gravity wave drag (GWD) parameterization

Parameterized wave stress:

$$\tau_x = \overline{\rho} \, u' w'$$

Drag: $\left(\frac{\partial U}{\partial t}\right)_{\text{drag}} = -\frac{1}{\overline{\rho}}\frac{\partial \tau_x}{\partial z}$

- WRF namelist option: gwd_opt = 1
- Kim and Arakawa (1995); Kim and Doyle (2005)
- Includes drag from subgrid-scale low-level flow blocking
- Input topographic statistics variables (e.g., standard deviation of subgrid topography) from static files – available in WPS_GEOG

Goals of this work

- To quantify the instantaneous vertical momentum flux profiles associated with resolved gravity waves in high-resolution simulations (we'll call these fluxes the "truth")
- To compare these with parameterized fluxes on coarse grids
 - Determine how well the GWD parameterization does "out of the box"
 - Verify tuned parameters based on past empirical studies
 - Determine the "gray zone" horizontal resolutions for the GWD parameterization

Method

Use high-resolution WRF reforecasts run during the Wind Forecast Improvement Project 2 (WFIP2)

- Field campaign to improve wind forecasts over complex terrain
- 750m grid nested within 3km HRRR grid

Z

Method

Use high-resolution WRF reforecasts run during the Wind Forecast Improvement Project 2 (WFIP2)

Field campaign to improve wind forecasts over complex terrain

Method

Use high-resolution WRF reforecasts run during the Wind Forecast Improvement Project 2 (WFIP2)

Feed pseudo-coarse grid variables into the parameterization code -module_bl_gwdo.F -- to get the parameterized momentum flux.

Note: This is facilitated by the NCL "WRAPIT" script feature, in which Fortran functions are called from NCL.

Diagnosing momentum flux in the 750m resolution model

Following the method of Kruse and Smith (JAS, 2015)

Example: Find u' for calculation of $\tau_x = \overline{\rho} u' w'$ at z = 5km

2016 Dec 03 1200UTC (12hr reforecast)

Diagnosing momentum flux in the 750m resolution model

Following the method of Kruse and Smith (JAS, 2015)

Example: Find u' for calculation of $\tau_x = \overline{\rho} u' w'$ at z = 5 km 2016 Dec 03 1200UTC (12hr reforecast)

Diagnosing momentum flux in the 750m resolution model

Following the method of Kruse and Smith (JAS, 2015)

Vertical momentum flux profiles Consider three pseudo-coarse grids

3km HRRR grid

13km RAP grid

40km RAP-like grid

Vertical momentum flux profiles

3km HRRR grid

GWD fully resolved

13km RAP grid

GWD partially resolved

40km RAP-like grid

GWD almost fully parameterized

Vertical momentum flux profiles

3km HRRR grid

13km RAP grid

40km RAP-like grid

Tuning coefficient: λ_{eff} = effective grid length (WRF code variable cleff)

- Default value of cleff is the grid cell length (Δ)
- Alternative "tuned" values of cleff used by NCEP in the GFS model (same GWD scheme) given by

cleff
$$=\frac{2900}{\sqrt{\Delta}}$$
 km

Vertical momentum flux profiles

3km HRRR grid

13km RAP grid

40km RAP-like grid

Additional parameterizations implemented in the RAP/HRRR orographic drag suite

- Small-scale gravity wave drag scheme of Tsiringakis et al. (*J. Appl. Meteor.*, 2017)
 - Represents GWD drag in stable PBL
 - Grid cell lengths > 1km
- Turbulent orographic form drag scheme of Beljaars et al. (Q. J. R. Meteorol. Soc., 2004)
 - Grid cell lengths > 1km

Drag suite performance in the RAP (13km grid)

Upper Air (RAOBS) : Profile: show matching diffs MATCHED

- ---- Curve0: RAP_OPS_130 in HRRR domain, winds RMS, level: 1 to 1050, fcst_len: 12h, valid-time: both, clouds: All, 03/09/2019 12:00 06/09/2019 12:00
- ---- Curve1: RAP GSD 130 in HRRR domain, winds RMS, level: 1 to 1050, fcst len: 12h, valid-time: both, clouds: All, 03/09/2019 12:00 06/09/2019 12:00 --- Curve1-Curve0: Difference **Operational RAP** Curve0- mean = 4,464 Curve1- mean = 4.379 Experimental RAP (incl. new drag suite) Curve1-Curve0- mean = -0.08489 Exp. minus Ops. 100 200 300 400 Pressure Level RMS 500 600 Error 700 800 900 1000 2 3 5 1 m/s

Upper Air (RAOBS) Wind Speed Verification

- HRRR CONUS Domain
- 12-hour forecast
- 2019 Mar 9 Jun 9

Drag suite performance in the RAP (13km grid)

Upper Air (RAOBS) : Profile: show matching diffs MATCHED

---- Curve0: RAP_OPS_130 in HRRR domain, winds Bias (Model - Obs), level: 1 to 1050, fcst_len: 12h, valid-time: both, clouds: All, 03/09/2019 12:00 - 06/09/2019 12:00

Upper Air (RAOBS) Wind Speed Verification

- HRRR CONUS Domain
- 12-hour forecast
- 2019 Mar 9 Jun 9

Summary

- The WRF orographic subgrid-scale GWD parameterization provides vertical momentum fluxes that are reasonably close to those diagnosed from high-resolution simulations
- The study helped to verify previously determined tuning settings of the scheme
- GWD is fully resolved at ≤3km in the case study shown, so the parameterization is not needed at these grid resolutions
- The gray zone resolutions appear to be in the range ~ 5 40km
- The scheme is active in the next implementation of the 13km RAP for operational NWP as part of a new orographic drag suite developed at NOAA/GSD

The future of orographic drag parameterizations

- You may have noticed that the parameterized GWD momentum fluxes could be improved
 - Non-linearity?
 - Transients?
 - Horizontal gravity-wave propagation from neighboring grid cells?
 - Proper representation of subgrid topography?
- There is renewed community interest in improving GWD parameterizations, e.g.,
 - GASS/WGNE Surface Drag and Momentum Transport project: http://www.gewex.org/panels/global-atmosheric-system-studies-panel/gass-projects

