

Introduction

- The Perdigäo experiment (Fernando et al., 2019) focused on the small scale wind patterns surrounding a low-profile double ridge
- Initial model results suggested that roughness length values were too low (Fig. 1) for an area that was heavily forested.
- Comparison of LiDAR survey data with CORINE and USGS the land use classes suggests that the study area had been misclassified.
- Solution:
 - 1. Correct land use classification to reflect LiDAR data
 - 2. Use alternate land surface model (LSM) that accounts for plant canopy (Noah-MP)

Fig. 2: (a, b) WRF nested domain configuration with

topography. (c) Domain 5 (D5) extent and topography

turbine (WT) 100-m masts and NCAR radiosonde site

(RS). Black line represents location of vertical cross-

and (d) close up of D5 showing the location of the wind

т29

UNCLASSIFIED P20. Sensitivity of boundary layer structure in complex terrain to land use and land surface

Andre Pattantyus U. S. Army Research Laboratory, White Sands Missile Range, NM (575) 678-2078; andre.k.Pattantyus.ctr2mail.mil

Fig. 6: Hub height (80 m) timeseries of turbulent intensity (TI) (a) 11 May 2017 and (b) 15 May 2017 compared to 3-D sonic observations (black). All times are UTC.

- TI underestimated at night
- TI at Tower 20 is steady but more variable
 - downstream at Tower 29
- NN experiment captures
 Tower 29 variability more
 than NLU.

May 15: little difference in experiments and both match observations well

Fig. 7: Vertical cross section of mean u-component velocity (left) 11 May 2017 and (right) 15 May 2017. Note the difference in scales between days.

Fig. 1: (a) Native CORINE 2012 landuse classes on a 100-m grid (legend displays only the classes in the scene), (b) translation of the CORINE data into the 24-class USGS used in WRF on a 250-m grid. (c) z_0 (m) associated with USGS landuse categories in (b), and (d) mean canopy height (m) estimated from aerial LiDAR survey with 50-m contour lines (white).

Model configuration and sensitivity experiments

- WRF v3.8.1 with 5:1 ratio down to 50 m resolution (Fig. 2)
- Sensitivity experiments run varying land use data and LSM options (Table 1)
- Domains 4 (250 m) and 5 (50 m) run in LES mode (diff_opt=3)
- Physics options kept constant (Table 2)
- Sensitivity experiments run for 2 cases (Fig. 4)

Experiment	Land Use	LSM
CTL	Default CORINE	Noah
NLU	Edited CORINE	Noah
NLSM	Default CORINE	Noah-MP
NN	Edited CORINE	Noah-MP

Table 1

Physics	Option	
Cumulus	Kain-Fritsch (D01)	
Microphysics	New Thompson	
Planetary Boundary	YSU (D01-03)	
Surface Layer	Revised MM5	
SW Radiation	Dudhia	
LW Radiation	RRTM	

Table 2

section.

- May 11 there is distinct difference in u-componence velocity between NLU and NN that extends well above ridge height in the boundary layer (Fig. 7).
- There Is evidence on May 11 of reverse flow in the lee of the ridges at the surface
- May 15 NN experiment shows stronger flow above ridge height compared to NLU
 - Stronger shear profile with NN especially on windward side
 - Weaker leeside winds below ridge height

Fig. 8: Simulated horizontal wind vectors at 10 m (black) and observations (red) valid (left) 2330 UTC 11 May 2017 and (right) 1200 UTC 15 May 2017. Note the difference in scales between days. A reference vector is plotted in upper middle of each plot with magnitude label.

- May 11: cross-barrier flow was dramatically reduced from NLU to NN (Fig. 8)
 - Flow within the valley is greatly improved and aligns with observations in NN
 - NN shows greater amount of flow channeling by topography
- May 15: improved representation of winds along ridge crests
 - Cross-barrier flow still impacting valley flow in NLU
 - Higher variability in simulations with weaker forcing especially within valley

Discussion

Simulations with lower z_0 values overestimate winds speeds and power potential from wind turbines especially during the day when demand is higher.

This error is reduced by changing land classes or using two-level LSM (Noah-MP) to increase z_0 Noah-MP simulations tend to improve near surface flow field while also reducing wind speed error - Increase in z_0 also improves TI estimates under strong forcing suggesting much of the variance is associated with surface properties Power spectra of horizontal wind speed (m² s⁻¹) at hub height reveal lower energy in Noah-MP simulation from km scale to tens of meters compared to Noah simulation (Fig. 9) - Impact of grid resolution notable at tower 25 within the valley: larger grids cannot resolve. - Spectra suggest effective resolution $\sim 3 dx$ according to Skamarock (2004).

Fig. 3: (a) Default CORINE landuse categories and (b) edited CORINE landuse categories used in domain 5.

Fig. 4: NCAR radiosonde profiles valid (a) 11 May 2017 and (b) 15 May 2017. All times are UTC.

Fig. 5: Simulated profiles valid (left) 17 UTC 11 May 2017 and (right) 05 UTC 15 May 2017 compared to NCAR profiles (black). Heights are MSL.

- Distinct differences seen between experiments with differing LSM's (Fig. 5)
 - Especially during May 11 case (synoptically forced).
 - Modest improvement in May 11 when land use changed to increase z₀
 - Little change in Noah-MP experiments because land cover parameters (z₀) are relatively invariant across classes
 - Remainder of discussion will focus on results of NLU and NN experiments

Fig. 6: Hub height (80 m) timeseries of wind speed and direction (left) 11 May 2017 and (right) 15 May 2017 compared to 3-D sonic observations (black). All times are UTC.

Fig. 9: Power spectra for 80-m horizontal wind speed at towers 20 (top), 25 (middle), and 29 (bottom) for May 11 (left) and May 15, 2017 (right).

Conclusions

- Choice of LSM has larger impact on near surface wind speeds than underlying land use classes
- LSM impact to wind field extends through great depth of boundary layer influencing hub-height power potential and turbulence
- Wind field greatly improved within valley with Noah-MP
- Improvements to boundary layer moisture and near surface stability were also achieved with Noah-MP and are impaortant for dispersion of pollutants and fog formation
- Results from coarser grids suggest even 250-m grid was not able to adequately represent many flow features including valley flow, slope flow, flow blocking, flow channeling.
- Larger implications for previous wind resource assessments using WRF and Noah LSM which likely overestimated wind over complex terrain or forested areas.
- Authors encourage the use of Noah-MP for future simulations over Perdigão study area

References

Hub height winds speeds (80 m) are overestimated in all simulations (Fig. 6) Noah-MP has lower MAE particularly in the afternoon hours Experiments have shallower southerly flow in valley on May 11 Quiescent period (May 15) results compare well with observations

