

Objective: Use Design of Experiments methods to identify which WRF-ARW parameter schemes drive the bias.

Consider a forecast as a map from an observed atmospheric state to some future state. Mathematically, we say:

Where:

• *f* here is the NWP code WRF (Skamarock et al. 2008). We treat *f* as a set of functions where each $f_i \in f$, i = 1, 2, ..., N is a specific configuration of the NWP code. N, although countable, is so large as to preclude a search of f using brute force methods.

 $f: x \to y$

- *x* represents the observed atmospheric state and/or initialization conditions
- y is a forecast.

Goal: Find $f_{(i)} \in f$ that minimizes the difference between the forecast and observed values at a specific point in time, a value we call "bias".

Data:

- The matched forecast observation pair data elements produced by MET Point-Stat (National Center for Atmospheric Research 2016)
- The model employed uses WRF (version 3.8.1) in a 9/3/1 nest.
- Initialization 0.5° GFS (NOAA 2018d) forecast data providing gridded background fields with raw observations analyzed onto the background fields; 1/12° (~9 km) RTG high resolution SST (NOAA2018c); and 1 km NOHRSC SNODAS (NOAA 2018b) snow data when available and GFS snow data elsewhere.
- 6-h pre-forecast with observation nudging (12-18 UTC).
- Observation nudging during data assimilation uses TAMDAR (AirDat 2018) aircraft data and various MADIS (NOAA 2018a) datasets [standard surface observations, mesonet surface observations, maritime surface observations, profiler data, rawinsondes, and ACARS (aircraft) data (Mamrosh 1997)] (Dumais and Reen 2013; Dumais et al. 2015).
- The model top was set at 10mb for all runs.

Initial Design:

- Forty WRF runs
- Six different parameters (but the cumulous scheme was dropped from subsequent analysis because it was only applied to the outer domain)
- Two domains, San Diego and San Francisco
- Five case days
- Almost balanced and nearly orthogonal in order to be able to calculate the factor effects
- Some runs crashed and were unrecoverable so only 25 runs were actually completed.

Runs

Run	Domain	Case	Boundary Layer	Microphysics	Shortwave	Longwave	Land S
			(PBL) ¹	(MP)	(SW)	(LW)	(LSM)
1	SAN	02/07	MYNN2	Eta	RRTMG	New Goddard	CLMv
2	SAN	02/07	SH	Goddard	Goddard	RRTM	NOAH
3	SAN	02/09	MYJ	Thompson	Dudhia	RRTM	5ITD
4	SAN	02/09	MYNN2	Lin	Dudhia	New Goddard	RUC
5	SAN	02/09	MYNN2	Lin	Goddard	New Goddard	RUC
6	SAN	02/09	SH	Lin	GFDL	RRTMG	NOAH
7	SAN	02/16	YSU	Goddard	GFDL	GFDL	CLMv
8	SAN	02/16	MYJ	WSM5	Goddard	GFDL	NOAH
9	SAN	02/16	ACM2	Thompson	GFDL	New Goddard	5ITD
10	SAN	03/01	MYJ	WSM5	Dudhia	GFDL	NOAH
11	SAN	03/01	MYJ	Thompson	Goddard	New Goddard	RUC
12	SAN	03/05	YSU	Lin	GFDL	RRTM	CLMv
13	SAN	03/05	SH	Eta	Goddard	RRTM	CLMv
14	SFO	02/07	YSU	WSM5	Goddard	RRTMG	RUC
15	SFO	02/07	MYJ	Thompson	Dudhia	RRTMG	RUC
16	SFO	02/07	MYNN2	Thompson	RRTMG	New Goddard	RUC
17	SFO	02/09	MYNN2	Lin	Dudhia	New Goddard	CLMv
18	SFO	02/16	YSU	Lin	GFDL	RRTM	RUC
19	SFO	02/16	MYJ	Lin	RRTMG	GFDL	5ITD
20	SFO	02/16	SH	Goddard	GFDL	RRTMG	RUC
21	SFO	03/01	MYNN2	Thompson	Goddard	GFDL	CLMv
22	SFO	03/01	ACM2	WSM5	GFDL	RRTMG	5ITD
23	SFO	03/01	ACM2	Goddard	RRTMG	GFDL	RUC
24	SFO	03/05	YSU	Goddard	Dudhia	New Goddard	NOAH
25	SFO	03/05	YSU	Thompson	Dudhia	RRTM	5ITD

1: Includes Surface Layer Scheme, but only Boundary Layer Scheme noted.

APPLYING DESIGN OF EXPERIMENTS TO NUMERICAL WEATHER PREDICTION Jeffrey A. Smith, Judah L. Cleveland, Richard S. Penc, John W. Raby

Design

Figure 2: The correlation and density of the original design matrix (top) and the as-ran matrix (bottom). The orange points are the failed runs.

Figure 3: Dew point biases at 21Z by parameterization scheme organized by microphysics and land surface scheme. Mean values are indicated by a single glyph. Note: the 02/09 case for San Diego (SAN) using the MYNN2 Boundary Layer Schemes is runs 4 and 5 plotted together. The only feature distinguishing these runs is the choice of shortwave radiation scheme (Dudhia vs. New Goddard).

APPROVED FOR PUBLIC RELEASE

🗧 WSM5 吉 Eta LSM 5ITD NOAH RUC CLMV4

Results

Effect Size

- Effect magnitude between 0 and 1
- Effect magnitude between 1 and 3 Effect magnitude between 3 and 5
- Effect magnitude greater than 5

Model

Classical Regression Multilevel Regression

Coefficient Estimate						IVIUITIIEVEI Regression Model					
								regression term	estimate	std.error	
Classical Linear Regression 21Z Model of Dew Point Bias (K)					(Intercept)	0.9850	1.3016				
		regression term	estimate	std.error	p.value		Domain	SAN	0.8851	0.1905	
		(Intercept)	0.0973	0.7332	0.8945		Domain	SFO	1.0848	0.1911	
	Domain	SFO	0.9140	0.5521	0.0980	SQ		02/07	0.6826	0.2409	
	Case	02/09	1.4102	0.4748	0.0030	Grou	Case	02/09	2.2686	0.2340	
		02/16	-4.0745	1.1998	0.0007			02/16	-1.9293	0.2283	
		03/01	-2.3352	0.8661	0.0071			03/01	-0.6237	0.2383	
		03/05	3.4801	0.5356	0.0000			03/05	4.5266	0.2515	
		MYJ	6.6782	0.6919	0.0000		PBL/SL	MYJ	5.9603	0.5551	
	-/SL	MYNN2	1.8248	0.5837	0.0018			MYNN2	1.7837	0.5811	
arameterization Scheme	PBL	ACM2	0.5538	0.4677	0.2365			ACM2	0.4893	0.4666	
		SH	3.8091	0.557	0.0000			SH	3.4258	0.5113	
	Microphysics	WSM5	1.4266	0.5451	0.0089	D	Land Surface Microphysics	WSM5	1.2283	0.5339	
		Eta	2.9483	0.8422	0.0005	em		Eta	2.0943	0.6491	
		Goddard	0.0644	0.3913	0.8693	Sch		Goddard	-0.0940	0.3838	
		Thompson	-1.9915	0.3458	0.0000	Parameterization		Thompson	-1.9584	0.3435	
	Land Surface	NOAH	-8.7646	0.5907	0.0000			NOAH	-8.3873	0.5516	
		RUC	-0.2665	0.3715	0.4733			RUC	-0.2085	0.3694	
		CLMv4	-3.402	0.6962	0.0000			CLMv4	-2.8249	0.6123	
	Short- wave	Goddard	0.4272	0.3284	0.1935		Short- wave	Goddard	0.1383	0.2803	
		RRTMG	-2.0962	0.5718	0.0003			RRTMG	-1.6300	0.487	
		GFDL	6.5121	1.0956	0.0000			GFDL	5.1344	0.7264	
	μ θ	RRTMG	-4.4738	0.6639	0.0000		μ υ	RRTMG	-3.7351	0.4609	
	ong vavu	New Goddard	1.4379	0.5461	0.0085		ong vav	New Goddard	0.9102	0.4448	
		GFDL	3.7414	0.9288	0.0001			GFDL	2.7081	0.7093	
n	 References 1. AirDat, 2. Dudhia 3. Dumais Report 4. Dumais assimila Observit 5. Fisher, 6. Gelman 7. Hu, X. Appl. M 8. Mamros Americ 9. Nationa 	cited 2018: AirDat Rea , J., 2015: Overview of V , R. E., and B. P. Reen, 2 ARL-TN-0546. , R. E., Jr., B. P. Reen, J ation scheme for the US ing and Assimilation Sys R. A., 1971: The Design A. A., and J. Hill, 2007: I M., J. W. Nielsen-Gamn Jeteorol. Climatol., 49, sh, R. D., 1997: The use an Meteorological Socie al Oceanic and Atmosphi ble online at http://madi	1-Time TAMDA WRF Physics. 20 2013: Data assin A. Smith, D. I. Army convection stems for the Atra of Experiments Data Analysis Us non, and F. Q. Zh 1831-1844. of high- frequency. eric Administrat s.noaa.gov/.]	R Weather Data 015 Basic WRF nilation techniqu Knapp, and H. (on-scale nowcast mosphere, Ocean Eighth ed. Haf sing Regression hang, 2010: Eva ncy ACARS sou ion (NOAA), cit	and Produc Tutorial, Na les for rapid Cai, 2015: E ting system. ns, and Land ner Publishi and Multile luation of T Indings in fo ted 2018: M	ets. [Ava ational C lly reloc Develop 95'th A d Surfac ing Con vel/Hier hree Pla precastin	ailable online Center for Atri- catable weather ing a WRF-ba- nnual AMS M ce (IOAS-AO npany, Inc rarchical Moc anetary Bound ng convective ogical Assimi	at http://www.airdat.com nospheric Research. er research and forecastic ased mixed variational at Meeting, 19th Conferenc LS) Paper 5.2. lels. Cambridge Universe dary Layer Schemes in the storms. Weather and Fo lation Data Ingest System	1/.] ng modeling. I nd nudging da e on Integrated sity Press. he WRF Mode recasting Cont m (MADIS).	Final ta 1 el. J. ference,	
	10. — c	ited 2018: National Ope	rational Hydrold	ogic Remote Sen	sing Center	· (NOHI	RSC). Snow I	Data Assimilation System	n (SNODAS)		

- rational Hydrologic Remote Sensing Center (NOHRSC), Show Data Assimilation System (SNODAS) [Available online at https://www.nohrsc.noaa.gov/.]
- 11. —, cited 2018: Real-Time Global Sea Surface Temperature (RTG_SST). [Available online at
- http://www.nco.ncep.noaa.gov/pmb/products/sst/.] 12. —, cited 2018: Global Forecast System (GFS). [Available online at https://www.ncdc.noaa.gov/data-access/model-data/modeldatasets/global-forcast-system-gfs.]
- 13. Skamarock, W. C., and Coauthors, 2008: A description of the advanced research WRF version 3. NCAR Technical Note NCAR/TN-475+STR.
- 14. Wu, C. F. J., and M. S. Hamada, 2009: Experiments Planning, Analysis, and Optimization 2nd ed. John Wiley & Sons, Inc., 716 pp.