

Multi-scale Modeling of Air Quality and Greenhouse Gases over Greater Boston, Part I: Evaluation of Regional to Local Predictions Using Surface and Satellite Data

Yiyue Yang¹, Yang Zhang¹, Ying Wang¹

Siqi Ma², and Daniel Tong²

¹Department of Civil and Environmental Engineering, Northeastern University, Boston, MA 02115, USA ²Atmospheric, Oceanic and Earth Sciences Department, George Mason University, Fairfax, VA22030,USA

Joint WRF/MPAS Users Workshop, June 26, 2024

isuper

Background

- The Intelligent Solutions to Urban Pollution for Equity and Resilience (iSUPER) Impact Engine sponsored by Northeastern University
- Ground-level ozone (O₃) and particulate matter (PM): criteria air pollutants (CAPs); Carbon dioxide (CO₂): a greenhouse gas (GHG)
- The Weather Research and Forecasting model coupled with Chemistry and Greenhouse Gases (WRF-Chem-GHG) simultaneously tracks CAPs and GHGs

• Objectives

- Assess model capability of reproducing CAPs and GHGs, and its sensitivity to grid resolutions
- Identify underlying reasons for model biases in typical summer and winter months to inform potential areas of model improvements
- To provide background conditions for hyperlocal street-scale modeling (Part II)

WRF-Chem-GHG Configuration

ICON/BCON: initial/boundary condition NCEP FNL: National Center for Environmental Protection FNL

(Final) Operational Global Analysis data

WACCM: The Whole Atmosphere Community Climate Model FINN: Fire INventory from NCAR

QFED: Quick Fire Emissions Dataset

NEMO: Neighborhood Emission Mapping Operation *EDGAR*: Emissions Database for Global Atmospheric Research MEGAN: Model of Emissions of Gases and Aerosols from Nature

AER/AFWA: Atmospheric and Environmental Research Inc. and Air Force Weather Agency

VPRM: Vegetation Photosynthesis and Respiration Model

Baseline Simulation					
Attribute	Configuration				
Period	January and July 2023				
Domains	Triple-nested: 12-km (d01), 3-km (d02), 1-km (d03)				
Vertical layers	34 layers up to 100 hPa (~16 km)				
ICON/BCON	NCEP FNL (Meteorology); WACCM-FINN & Carbon Tracker (Chemistry)				
Anthropogenic emissions	1-km NEMO 2019 regridded to 12-, 3- and 1-km; EDGAR 2021				
Online emissions	MEGAN v2 (biogenic); Gong scheme (sea-salt); AER/AFWA scheme (dust); VPRM (GHG)				

isuper

Sensitivity Simulations

	Period	Simulation Design	Objectives				
SEN1	Jan	Adjust emissions	Reduce PM _{2.5} overpredictions				
SEN2	Jul	Use WACCM-QFED	Better representation of Canadian fires				

Observations for Model Evaluation

isuper

Network/Satellite	Variables	Data Frequency	
Air Quality System (AQS)	O ₃ , PM _{2.5}	hourly, daily	
Air Quality System (AQS)	EC, OC, NH ₄ , NO ₃ , SO ₄	daily every 3 days	
AirNow	O ₃ , PM _{2.5}	hourly	
PurpleAir	PM _{2.5}	hourly	
METeorological Aerodrome Reports (METAR)	T2, RH2, WS10, WD10, PRECIP	hourly	
Orbiting Carbon Observatory-3 (OCO-3)	CO ₂	daily	
CERES	SWDOWN, GLW	monthly	
MODIS	AOD, CCN	monthly	
OMI	TOR	monthly	
<i>EC</i> : elemental carbon <i>OC</i> : organic carbon <i>NH</i> ₄ , <i>NO</i> ₃ , <i>SO</i> ₄ : ammonia, nitrate, sulfate <i>T2</i> , <i>RH2</i> : temperature and relative humidity at 2 <i>WS10</i> , <i>WD10</i> : wind speed and wind direction a <i>PRECIP</i> : precipitation <i>SWDOWN</i> : downward shortwave radiation <i>GLW</i> : downward longwave radiation	t 10-m height CERES: the Clouds and the Ea	dual arth's Radiant Energy System ution Imaging Spectroradiomete	

Model Evaluation Protocols

isuper

Variable	Benchmark	Reference
T2	MB within ±0.5 °C MAGE ≤ 2 °C	
WS10	MB within ±0.5 m/s RMSE ≤ 2 m/s	Tesche and Tremback (2002); Monk et al. (2019)
WD10	MB within ±10 ° MAGE ≤ 30°	
Max 8-h O ₃	NMB within ±15% NME ≤ 25%	$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i$
24-h Avg PM _{2.5}	NMB within ± 30% NME ≤ 50%	Emery et al. (2017)
CO ₂	NMB within ± 30% NME ≤ 50%	Basu et al. (2023)

MB: mean bias MAGE: mean absolute gross error RMSE: root mean square error NMB: normalized mean bias NME: normalized mean error

isuper Meteorology: Performance Statistics Northeastern University olutions to Urban Pollution

□: 12-km; Δ: 3-km; o: 1-km; hollow markers: Jan; solid markers: Jul

Meteorology: Temporal Evaluation **iSUPER**

Logan International Airport 71.02°W, 42.37°N

- Temporal trend of meteorological variables is well captured
- Better reproduction for most meteorological variables at finer resolutions

- Good performance for Max 8-h O₃ and CO₂ and marginal performance for 24-h Avg PM_{2.5} in Jul
- Overpredicted PM_{2.5} compositions in Jan and underpredicted cloud variables in both months

*	Max 8-h O3		OC	+	SO ₄	0	AOD
•	24-h Avg PM _{2.5}	۲	NH_4	٠	other	Δ	CCN
×	CO ₂	۲	NO_3	•	TOR	٥	CF
۲	EC						

** Observational data for PM_{2.5} compositions is not yet available for Jul

Air Quality: Spatial Evaluation in Jan **iSUPER**

Northeastern University

Solutions to Urban Pollution

- O₃ magnitude is well captured
- High localized emission in urban center leads to
- higher PM_{2.5} at finer grid

resolutions

PA: PurpleAir

Northeastern University Solutions to Urban Pollution

isuper Air Quality: Spatial Evaluation in Jul

- Better performance for O_3
- at finer grid resolution
- Underpredicted PM_{2.5} due 48 44 in part to chemical BCON
- 40 1-km is not fine enough to 36 • 32 capture sub-grid variability 28

PA: PurpleAir

8 6

2

0

isuper Air Quality: Spatial Evaluation in Jul Solutions to Urban Pollution

Northeastern University

- Better performance for O_3 at finer grid resolution Underpredicted PM₂₅ due in part to chemical BCON
- 1-km is not fine enough to 36 • capture sub-grid variability

PA: PurpleAir

Air Quality: Temporal Evaluation **iSUPER**

- O₃ temporal trend and magnitude are well captured
- PM_{2.5} is overpredicted in Jan but well captured in Jul except Canadian wildfire days

R: correlation coefficient

Sensitivity Simulations

isuper

SEN1: Emission Adjustment

		EC	OC	NH_4	NO ₃	SO ₄	other	PM _{2.5}
	BASE	0.5	2.9	0.7	1.0	0.2	1.3	7.0
MB	SEN1	0.0	1.2	0.7	1.0	0.0	-0.2	2.6
	BASE	73.9	215	397	94.9	43.7	41.2	102
NMB	SEN1	-1.2	89.0	352	93.4	7.9	-7.2	38.0
NME	BASE	73.9	215	397	107	47.7	61.5	106
	SEN1	2.2	89.0	352	106	37.2	29.7	43.5

- Reducing primary PM_{2.5} emissions reduces overpredictions in EC, OC, unknown PM_{2.5} and sulfate
- Linear response of EC, OC and unknown PM_{2.5}

		O ₃	PM _{2.5}
NMB	BASE	-5.2	-32.6
(%)	SEN2	-4.2	-30.6
NME	BASE	16.9	47.3
(%)	SEN2	16.6	45.0

- WACCM-QFED has higher wildfire-induced PM_{2.5}
- WACCM-QFED slightly improves O₃ and PM_{2.5}

isuper

- WRF-Chem-GHG reproduces well T2 in Jul and WD10 in Jan, and RH2 and WS10 in both months, but shows large cold bias in T2 in Jan and gross error in WD10 in Jul
- WRF-Chem-GHG performs well for O_3 and CO_2 . $PM_{2.5}$ is overpredicted in Jan and underpredicted on Canadian wildfire days in Jul
- WRF-Chem-GHG performs better for most meteorological variables and O₃ at finer grid resolutions
- Future work: Further improve model performance by improving meteorological and chemical inputs and model representations.

Acknowledgments

- This work is supported in part by the Northeastern University Impact Engines program and in part by Wilbur Technical Services LLC (WTS). The development of WRF-Chem-GHG is sponsored by NOAA's AC4 program (award #NA20OAR4310293)
- Daniel Schuch and Eeshan Basu for help with generating input data
- Computer resources: Discovery cluster provided by Northeastern University; Cheyenne (doi:10.5065/D6RX99HX) and Derecho (doi:10.5065/qx9a-pg09) provided by the Climate Simulation Laboratory at NCAR's Computational and Information Systems Laboratory, sponsored by the National Science Foundation and other agencies
- Storage resources: the National Energy Research Scientific Computing Center (NERSC), a U.S. Department of Energy Office of Science User Facility located at Lawrence Berkeley National Laboratory, operated under Contract No. DE-AC02-05CH11231