

Multi-scale Modeling of Air Quality and Greenhouse Gases over Greater Boston, Part II: Sensitivity of Street-level Predictions to On-road Emissions from Traffic Activity Data

Ying Wang¹, Yang Zhang¹, Yiyue Yang¹, Lijiao Wang¹, Haris Koutsopoulos¹,

Siqi Ma², and Daniel Tong²

¹ Civil and Environmental Engineering Department, Northeastern University, Boston, MA 02115, USA
² Atmospheric, Oceanic and Earth Sciences Department, George Mason University, Fairfax, VA 22030, USA

Joint WRF/MPAS Users Workshop, June 26, 2024

Background

- Regional air quality models have limited skills on streets where on-road emissions are a major source
- The street-network model, MUNICH, coupled with the SSH-aerosol model (MUNICH-SSH) can simulate gas-phase chemistry, and aerosol chemistry and dynamics at the hyperlocal scale

Objectives

- Intercompare PM_{2.5} from MUNICH-SSH and WRF-Chem-GHG over Greater Boston
- Assess the impact of traffic activity data on on-road emissions and street-level air quality

isuper

MUNICH: Model of Urban Network of Intersecting Canyons and Highways SSH: SCRAM-SOAP-H²O SCRAM: Size-Composition Resolved Aerosol Model SOAP: Secondary Organic Aerosol Processor H²O: Hydrophilic/Hydrophobic Organics WRF-Chem-GHG: Weather Research and Forecasting model coupled with Chemistry and Greenhouse Gases

Pollutant mass transfer in the street network (a) and processes inside the street canyon (b)

MUNICH-SSH

MUNICH-SSH

A street-network model developed at CEREA, France (Kim et al., 2018, 2022)

Components:

- Street-canyon: atmospheric processes in the volume of urban canopy
- Street-intersection: horizontal transfer of pollutants between connected canyons

Physico-chemical processes: emissions, transport, chemistry, aerosol thermodynamic and dynamics, and deposition

Flowchart of MUNICH-SSH

CEREA: Centre d'Enseignement et de Recherche en Environnement Atmosphérique

Model Configuration

Domain: Greater Boston (28×21 km ² , ~14,000 segments))
Time period: Jan/Jul 2023	

Input	Source		
Background concentration	WRF-Chem-GHG 1-km results		
Meteorological condition	WRF-Chem-GHG 1-km results		
Street-level emissions	VEIN estimations		
Street geometry	Road Inventory from MassDOT		
Street/building height	Digital Synthetic City		

Configuration	Option
Aerosol size distribution	6 bins from 0.01 μ m to 10 μ m
Gas-phase chemistry	CB05 (Yarwood et al., 2005)
Turbulent transfer	Schulte et al. (2015)
Wind speed	Soulhac et al. (2011)

CB05: Carbon Bond version 5 MassDOT: Massachusetts Department of Transportation VEIN: Vehicular Emissions Inventory

Hourly emission estimate for exhaust and non-exhaust vehicle sources:

$$Emission_{pollutant} = \sum_{activity} (AR_{activity} \times EF_{pollutant})$$

- AR: activity rate, affected **by traffic flow, vehicle type, vehicle speed**, vehicle age, fuel type, engine size, and gross weight
- EF: emission factors, generated by EPA's MOVES3.1 model

	CASE 1: AADT	CASE 2: TransCAD
Data source	Massachusetts VMT 2022	Output from the transportation planning model TransCAD
Methods	Measurements, estimation and derivation from other years	Simulation based on socioeconomic data at the traffic analysis zone level and the capacity of each street
Information provided	Traffic flows and speed limit	Traffic flows, speed, and trip statistics

AADT: Annual Average Daily Traffic MOVES: MOtor Vehicle Emission Simulator VMT: Vehicle Miles Traveled

PM_{2.5} Emissions on Weekdays, Jul iSUPER

- Emission hotspots by AADT located along principal streets because of higher traffic volumes
- TransCAD gives higher estimates in most streets

Northeastern University

Solutions to Urban Pollution

μ: average σ: standard deviation

PM_{2.5} Evaluation: Jan

Simulation	Obs. data	MB (μg m ⁻³)	NMB (%)	NME (%)	R
WRF-Chem-GHG	AQS	5.1	79.1	82.1	0.7
	PurpleAir	5.8	128.7	129.6	0.6
MUNICH_AADT	AQS	7.1	111.4	112.3	0.7
	PurpleAir	6.0	132.8	133.9	0.6
MUNICH_TransCAD	AQS	6.3	98.1	99.2	0.7
	PurpleAir	7.1	156.3	157.5	0.6

- Stronger spatial variation and more hotspots along streets in MUNICH-SSH
- Overpredictions likely caused by uncertainties in emissions and inaccurate meteorological predictions

PM_{2.5} Evaluation: Jan_SENS

-71.10

-71.05

-71.00

-70.95

Simulation	Obs. data	MB (µg m⁻³)	NIVIB (%)	NME (%)	R
WRF-Chem-GHG_SENS	AQS	1.7	26.2	38.8	0.7
	PurpleAir	2.9	65.0	70.1	0.6
MUNICH_AADT_SENS	AQS	3.8	59.8	64.7	0.6
	PurpleAir	3.2	69.7	74.2	0.6
MUNICH_TransCAD_SENS	AQS	2.9	45.8	52.0	0.6
	PurpleAir	4.2	93.0	97.0	0.6

- Emission adjustments reduce ٠ PM_{2.5} overprediction significantly
- Higher bias against PurpleAir ٠ compared to AQS

PM_{2.5} Evaluation: Jul

m gu

PurpleAir sensors 0

Simulation	Obs. data	MB (μg m ⁻³)	NMB (%)	NME (%)	R
WRF-Chem-GHG	PurpleAir	-2.4	-21.4	44.0	0.2
MUNICH_AADT	PurpleAir	-2.7	-24.2	45.5	0.2
MUNICH_TransCAD	PurpleAir	-2.2	-19.8	46.0	0.1

- Better performance with smaller • differences between the two models in Jul than Jan
- Underpredictions and poor correlations •

Site-specific Performance: Jul iSUPER

-19.8

-1.2

46.0

0.1

37.7

0.3

MUNICH TransCAD

-0.1

w.: include Canadian wildfire days; w.o.: exclude Canadian wildfire days

-2.2

• The impact of Canadian wildfires is not well captured

11.0

PurpleAir

• Satisfactory performance during non-wildfire days on different types of streets

9.1

Sensitivity to On-road Emissions

 Different traffic activity data result in ~6% differences on average in PM_{2.5} predictions

isuper

 Higher PM_{2.5} with TransCAD, except heavy traffic streets

μ: averageσ: standard deviation

- Traffic activity data significantly impacts on-road emission estimation and hyperlocal $PM_{2.5}$ modeling, with better $PM_{2.5}$ predictions by TransCAD
- MUNICH-SSH effectively identifies hyperlocal pollution hotspots. Overpredicted PM_{2.5} in Jan. due likely to uncertainties in emissions and meteorological biases
- Future work: (1) improve the on-road emission inventory using neighborhoodspecific fleet compositions from automatic traffic recording (ATR) data; (2) improve background conditions from WRF-Chem-GHG

- This work is supported by the Northeastern University Impact Engines program and the Chaitanya Kanojia Graduate Fellowship by Northeastern University. The development of WRF-Chem-GHG is sponsored by NOAA's AC4 program (award #NA20OAR4310293)
- Thibaud Sarica, Daniel Schuch, Sergio Ibarra-Espinosa, and Muhammad Usama for helpful discussions
- High-performance computing: Cheyenne (doi:10.5065/D6RX99HX) and Derecho (doi:10.5065/qx9apg09) provided by the Climate Simulation Laboratory at NCAR's Computational and Information Systems Laboratory, sponsored by the National Science Foundation and other agencies; and Discovery cluster supported by Northeastern University's Research Computing team
- Storage resources: the National Energy Research Scientific Computing Center (NERSC), a U.S. Department of Energy Office of Science User Facility located at Lawrence Berkeley National Laboratory, operated under Contract No. DE-AC02-05CH11231