

High-resolution Numerical Simulations of Tropical Convection for the NASA INCUS Mission

Itinderjot (I.T.) Singh¹, Jennie Bukowski¹, Peter J. Marinescu¹, Leah Grant¹, Rachel Storer², Gabrielle Leung¹, and Susan van den Heever¹

Colorado State University
University of California – Los Angeles; NASA Jet Propulsion Laboratory

This work is supported by INCUS, a NASA Earth Venture Mission, funded by NASA's Science Mission Directorate and managed through the Earth System Science Pathfinder Program Office under contract number 80LARC22DA011.

Joint WRF/MPAS Users Workshop 2024

INCUS - INvestigation of Convective UpdraftS

Overarching Goal:

To understand why, when and where tropical convective storms form, and why only some storms produce extreme weather.

First global systematic investigation into CMF and its evolution within deep tropical convection

Convective Mass Flux (CMF) = the vertical transport of air and water

 $\frac{1}{1} + \frac{1}{1} + \frac{1}$

Image: NASA Earth Observator (https://www.flickr.com/photos/nasa2explore/14991571998/

NASA

INCUS Science Objectives

Objective 1: ENV → CMF

Determine the predominant environmental properties controlling CMF in tropical convective storms

Objective 2: CMF → High Clouds

Determine the relationship between CMF and high anvil clouds (critical to cloud-climate feedbacks)

Objective 3: CMF \rightarrow **Current and Future Weather**

Assess the relationship between CMF and type and intensity of the weather produced

Objective 4: CMF in Models

Evaluate these CMF observationally determined relationships in weather and climate models.

Image: NASA ISS

INCUS Investigation of Convective

 $\Delta t = 120 secs$

 $\Delta t = 90 secs$

Flight Direction

Updrafts ←

PI: Sue van den Heever, CSU DPI: Ziad Haddad, JPL Mission Manager: Yunjin Kim, JPL Project Scientist: Simone Tanelli, JPL

The INCUS Baseline Mission:

- Flies 3 SmallSats carrying RainCube-like radars with cross-track scanning capabilities and a TEMPEST-D-like radiometer
- Applies a novel time-differencing ($\Delta t = 30,90 \text{ and } 120 \text{ sec}$) approach
- Provides the first ever tropics-wide measurements of CMF and its evolution

Blue Canyon Technologies X-SAT Venus commercial bus

Tendeg deployable

Ka-band antenna

JPL cross-track scanning microwave radiometer (middle spacecraft only) (TEMPEST-D heritage)

JPL Ka-band radar with 5 beams (RainCube heritage)

∆t approach:

- Examine different parts of the CMF spectrum
 - 30s Δt: Best estimate of the strongest updrafts
 - 90s Δt: Robust compromise between detection and false alarm probability
 - 120s Δt: 95% of the updrafts detected with low false alarm probability

INCUS Algorithm Workflow

UPDRAFTS CONVECTIVE ЦО **INVESTIGATION**

INCUS LES Simulation Database

- 21 completed and/or currently running simulations
 - 13 case studies, 7 aerosol sensitivity tests, 3 microphysics schemes, 2 different models
 - Simulations chosen due to availability of observations and regions with varying convective clouds types, organization, and environments

INCUS LES: Domains and Structure

- Diverse convective storm database to train INCUS algorithm
- Large Eddy Simulation (LES) Models
 - Regional Atmospheric Modeling System (RAMS)
 - Weather Research and Forecasting Model (WRF)
 - Morrison & Thompson aerosol-aware microphysics

Simulation details

- 230 vertical levels / maximum Δz of 125 m
- Same physics suite for all runs
- >1.5 petabytes of storage for model data
- Development of "Model Statistics Package"
 - Analyze very high-res data across WRF & RAMS

¹Cotton et al., 2003; Saleeby and van den Heever, 2013; ²Skamarock et al., 2008; ³Hersbach et al., 2020

INCUS LES: Domains and Structure

G1 (1.6 km) - AUS1.1 WRF-Morrison (TWP-ICE)

Updraft Contours 2 m/s 10 m/s 30 m/s

Joint WRF/MPAS Users Workshop 2024

10

G2 (400 m) - AUS1.1 WRF-Morrison (TWP-ICE)

INCUS LES Simulation Database

. თ

σ

0

grated

Û

10

5

G3 (100 m) - AUS1.1 WRF-Morrison (TWP-ICE)

Simulation Animations – Scattered convection in Congo

G1 (1.6 km) -DRC1.1 WRF-Thompson v. RAMS

Simulation Animations – TRACER Case (US)

UPDRAFTS CONVECTIVE INVESTIGATION OF

Simulation Animations – PISTON Case (Western Pacific)

G1 (1.6 km) - WPO1.1 WRF-Morrison v. WRF-Thompson v. RAMS

- Less agreement across models for isolated & scattered convection
- Boundary layer schemes differ in WRF & RAMS among many other differences

Model Statistics Package – G1 Updrafts

Joint WRF/MPAS Users Workshop 2024

INCUS Algorithm Workflow

Cloud Model Simulations

Extensive database of LES simulations of convective systems in diverse environments

Cloud Object Tracking

Track millions of modeled updrafts and their environment using *tobac*

Radar and Radiometer Forward Model

Model data converted to INCUS Ka-band radar reflectivity (Z) and microwave Brightness Temperature (T_b)

Algorithm and Product Development

ML approaches to map time-separated Z profiles and MW Tb to various CMF metrics

Tracking Updrafts in LES Model Data

- Tracking is completed with tobac v1.5*
 - 3-dimensional tracking on simulated vertical velocity data
 - Multiple thresholds for feature identification
 - 1,2,3,4,....,50 m s⁻¹
- Updrafts at 100 m grid spacing are transient & chaotic

*Heikenfeld et al., 2019; Sokolowsky, Freeman et al. (in prep)

INCUS

Tracking Updrafts in LES Model Data

Simulation	Mode	Individual Updrafts Tracks	# of 2-min Periods (no overlap)
ARG1.1-R	MCS	27,013	61,214
ARG1.2-R	Terrain	24,456	55,418
AUS1.1-R	MCS	19,359	57,588
BRA1.2-R	MCS	15,870	46,027
RSA1.1-R	Terrain/Scattere d	15,168	57,693
PHI2.1-R	MCS	14,532	48,250
DRC1.1-R	Scattered	9,019	38,585
PHI1.1-R	Scattered	5,537	18,049
BRA1.1-R	Scattered	3,048	13,417
USA1.1-R	Scattered	3,451	18,428
WPO1.1-R	Scattered	1,834	10,409
Total		139,288	425,078

> 425,000 2-min segments if using non-overlapping 2-min periods from the 11 case study simulations

- + 2-min segments from WRF Morrison and Thompson
- simulations

Joint WRF/MPAS Users Workshop 2024

INCUS

CONVECTIVE UPDRAFTS

ЦО

NVESTIGATION

Ongoing Science - Modeling Team

- IT Singh: Quantifying the length scales of variability in tropical convective environments
- Jennie Bukowski: Relationship between convective mass flux and anvil properties; microphysics effects on updrafts & anvils
- Peter Marinescu: Sub-grid convective environment variability within reanalysis data; timescales of variability of vertical velocity and its budget components
- Gabrielle 'Bee' Leung: Dependence of precipitation and vertical velocity on grid spacing
- Rachel Storer: Idealized modeling to understand the sensitivity of $\Delta Z \rightarrow w$ mapping to microphysical process rates and parameters

And a lot more!

Joint WRF/MPAS Users Workshop 2024

80 100 x (km)

1. We are producing an extensive database of high-resolution numerical simulations of tropical convection using WRF (Morrison and Thompson) and RAMS models.

- The goal is to use these simulations as an input into a forward model to then develop the INCUS CMF retrieval algorithm
- 2. Running simulations at 100 m grid spacing and with large domain sizes (2000x2000x230) poses several challenges:
 - Large memory requirements and high computational costs
 - Issues with (very) large file I/O
- 3. Comparing model output with available radar data and IR T_b
- 4. Developing a Python module to analyze output across models
- 5. Lots of exciting science being done with these simulations!

UPDRAFTS

CONVECTIVE

Ц О

NVESTIGATION

Extra slides: INCUS LES Physics

Model Details		RAMS v6.3.02	WF	RF v4.4.2
Grids	#	size	$\Delta \mathbf{x}, \Delta \mathbf{y}$	output freq.
	G1	~ 800 km x 800 km	1.6 km	30 min
	G2	~ 300 km x 300 km	400 m	30 min
	G3	~ 200 km x 200	100 m	30 s
		km		
Vertical		230 levels with max	125 m vertic	al grid spacing
I & LBC			ERA5	
Land surface.	LEA	\F-3	Noah-MP	
PBL/ Turbulence	3D	Smagorinsky	G1: YSU PE 2D Smagori G2, 3: No P + 1.5 order	BL Scheme + nsky BL Scheme TKE
Radiation	Har SW	rington Two-stream, and LW	RRTMG	
Microphysics	2-m	oment (2M) RAMS	2M Morrisor 2M Thomps	ו & on Aerosol Aware

Total Water Mixing Ratio – 2.4 km AGL

INCUS

¹Cotton et al., 2003; Saleeby and van den Heever, 2013; ²Skamarock et al., 2008; ³Hersbach et al., 2020

Joint WRF/MPAS Users Workshop 2024

Extra slides: WRF namelist

u_physics	= 0,	0, 0,
shcu_physics	= 3,	0, 0,
a_lw_physics	= 4,	4, 4,
a_sw_physics	= 4,	4, 4,
ol_pbl_physics	= 1,	0, 0,
opo_wind	= 1,	0, 0,
sf_sfclay_physics	= 1,	1, 1,
sf_surface_physics	= 2,	2, 2,
sfflx	= 1,	
adt	= 1,	1, 1,
oldt	= 0,	0, 0,
cudt	= 0,	0, 0,
cloud	= 1,	
num_land_cat	= 21,	
f_urban_physics	= 0,	0, 0,
ractional_seaice	= 1,	

= 2,
= 0,
= 2, 2, 2,
= 4, 2, 2,
= 0, 0, 1,
= 0, 0, 1,
= 0, 0, 0,
= 0.12, 0.12,0.12,
= 290.
= 3,
= 5000., 5000.,5000.
= 0.2, 0.2, 0.2,
= 0, 0, 0,
= 0, 0, 0,
= .true., .true.,.true.,
= 4, 4, 4,
= 3, 3, 3,
= 1, 1, 1,
= 0, 0, 0,
= .true., .true.,.true
= 0, 0, 0,

= 20, = .true.

spec bdy width

specified

Extra slides: INCUS LES Physics

