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Preliminaries

Notation:

— X = model’s state w.r.t. some discrete basis, e.g. grid-pt values

— y = Hx + € = vector of observations with random error €

— Superscript f denotes forecast quantities, superscript a analysis, e.g. x
— P = Cov(x/) = forecast covariance matrix ... a.k.a. B in Var



The Kalman Filter (KF)

Assume
> xt ~ N(x/,P7); Gaussian forecast errors

> ¢ ~ N(0,R); Gaussian observation errors

KF analysis implements Bayes rule for Gaussians
> analysis equations:

x=%x' + Ky —HX) ; P*=(1-KH)P/,

> Kalman gain
K=P/H'(HP/H" + R)!

Computationally difficult unless problem is small
> P/, P%are N, x N, w/ N, =dimx



Ensemble Kalman Filter (EnKF)

EnKF analysis step

— As in KF analysis step, but uses sample (ensemble) estimates for
covariances

— e.g. one element of PHTis
Cov(x',y) = N, ' Z(x/ - mean(x))(y/- mean(y’)
where y' = Hx'is the forecast, or prior, observation.
— Output of EnKF analysis step is ensemble of analyses

EnKF forecast step

— Each member integrated forward with full nonlinear model
— Monte-Carlo generalization of KF forecast step



Relation of Var and KF

Analysis equations

> Variational: compute x* as minimizer of
J(x) = (x —x")(P) "' (x —x")" + (y* — Hx)R™'(y’ — Hx)”
> Kalman filter,

x* =x/ + K(y’ — Hx/), K=P/H"(HP/H" +R)"!

These are equivalent
... as long as P'and R are the same in both systems



EnKF Analysis/Update

Example: update w given v, observation
> calculate v/ = Hx/ for each member and d = Var(v)) + R

> update w via

w® = w' + (Cov(w!,v])/d)(v? — vl +¢€), €~ N(0,R)

a) foreqast ensgmb/e a_nd obs. D) updated ens.emble .
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Flavors of EnKF

ETKF

— Pfis sample covariance from ensemble
— Analysis increments lie in ensemble subspace
— Computationally cheap--reduces to N, x N, matrices

— Useful for EF but not for DA: In Var “hybrid” system, ETKF updates
ensemble deviations but not ensemble mean

“Localized” EnKF

— Cov(y,x) assumed to decrease to zero at sufficient distances
— Reduces computations and allows increments outside ensemble subspace

— 1 approximate equivalence with o-CV option in Var--different way of
solving same equations

— Numerous variants; DART provides several with interfaces for WRF



Data Assimilation Research Testbed (DART)

DART is general software for ensemble filtering:
— Assimilation scheme(s) are independent of model

— Interfaces exist for numerous models: WRF (including global and single
column), CAM (spectral and FV), MOM, ROSE, others

— See http://www.image.ucar.edu/DAReS/DART/

Parallelization

— Forecasts parallelized at script level as separate jobs; also across
processors, if allowed by OS

— Analysis has generic parallelization, independent of model and grid
structure



WRF/DART

Consists of:

— Interfaces between WRF and DART (e.g. translate state vector, compute
distances, ...)

— Observation operators
— Scripts to generate IC ensemble, generate LBC ensemble, advance WRF

Easy to add fields to state vector (e.g. tracers, chem species)
— Plan to add namelist control of fields in state vector

A few external users (5-10) so far



Nested Grids in WRF/DART

Perform analysis across multiple nests simultaneously
— Innovations calculated w.r.t. finest availble grid
— All grid points within localization radius updated

D1

D2




Var/DART

DART algorithm

— First, calculate “observation priors:” H(x) for each member
— Then solve analysis equations

Possible to use Var for H(x"), DART for rest of analysis

— Same interface as between Var and ETKF: H(x/) are written by Var to
gts_omb_oma files, then read by DART

— Allows EnKF within existing WRF/Var framework, and use of Var
observation operators with DART

— Under development



Some Applications

Radar assimilation for convective scales
—  Altug Aksoy (NOAA/HRD) and David Dowell (NCAR)

Assimilation of surface observations

— Dowell
— Also have single-column version of WRF/DART from Josh Hacker (NCAR)

Tropical cyclones
— Ryan Torn (SUNY-Albany), Yongsheng Chen (York), Hui Liu (NCAR)

GPS occultation observations
— Liu
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