### WRF 4D-Var System (Will be released soon)

Xin Zhang, Xiang-Yu Huang Qingnong Xiao, Zaizhong Ma, John Michalakes, Tom Henderson and Wei Huang

> MMM Division National Center for Atmospheric Research Boulder, Colorado, USA

Feb. 4th 2009

WRF-Var Tutorial 2009

### Contents

- Structure of WRF 4D-Var
- Scientific Performance of WRF 4D-Var
- Software Engineering Performance of WRF 4D-Var
- On-going Works

### 4D Variational Data Assimilation



Feb. 4th 2009

WRF-Var Tutorial 2009

3

### From 3D-Var to 4D-Var

$$J = \frac{1}{2} (\mathbf{X} - \mathbf{X}^{b})^{T} \mathbf{B}^{-1} (\mathbf{X} - \mathbf{X}^{b}) + \frac{1}{2} (\mathbf{y}^{o} - \mathbf{H}\mathbf{X})^{T} \mathbf{O}^{-1} (\mathbf{y}^{o} - \mathbf{H}\mathbf{X})$$

$$J = \frac{1}{2} (\mathbf{X} - \mathbf{X}^{b})^{T} \mathbf{B}^{-1} (\mathbf{X} - \mathbf{X}^{b}) + \frac{1}{2} \sum_{t=1}^{k} (\mathbf{y}^{o}_{t} - \mathbf{H}_{t} \mathbf{M}_{t} (\mathbf{X}))^{T} \mathbf{O}^{-1} (\mathbf{y}^{o}_{t} - \mathbf{H}_{t} \mathbf{M}_{t} (\mathbf{X}))$$

$$\nabla J = \mathbf{B}^{-1} (\mathbf{X} - \mathbf{X}^{b}) + \sum_{t=1}^{k} M_{t}^{T} H_{t}^{T} \mathbf{O}^{-1} (\mathbf{y}^{o}_{t} - \mathbf{H}_{t} \mathbf{M}_{t} (\mathbf{X}))$$

$$= \mathbf{B}^{-1} \partial \mathbf{X} + \sum_{t=1}^{k} M_{t}^{T} H_{t}^{T} \mathbf{O}^{-1} (\mathbf{y}^{o}_{t} - \mathbf{H}_{t} \mathbf{M}_{t} (\mathbf{X}))$$

$$\mathbf{W} \mathbf{F} \mathbf{A} \mathbf{D}$$

$$\mathbf{W} \mathbf{W} \mathbf{F} \mathbf{A} \mathbf{D}$$

$$\mathbf{W} \mathbf{W} \mathbf{F} \mathbf{T} \mathbf{L}$$

$$\mathbf{F} \mathbf{b}, 4\mathbf{h} 2009$$

$$\mathbf{W} \mathbf{F} \mathbf{V} \mathbf{a} \mathbf{T} \mathbf{U} \mathbf{U} \mathbf{U} \mathbf{U} \mathbf{U}$$

# Basic system: 3 exes, disk I/O, parallel, full dynamics, simple phys



mpirun -np 4 da\_wrfvar.exe -np 4 wrf.exe -np 8 wrfplus.exe

## Scientific Performance of WRF 4D-Var

Typhoon Haitang experiments:

5 experiments, every 6 h, 00Z 16 July - 00 Z 18 July, 2005. Typhoon Haitang hit Taiwan 00Z 18 July 2005

- 1. FGS forecast from the background [The background fields are 6-h WRF forecasts from NCEP GFS analysis.]
- 2. AVN forecast from the NCEP GFS analysis
- 3. 3DVAR forecast from WRF 3D-Var
- 4. FGAT first guess at appropriate time ( A option of WRF-3DVAR)
- 5. 4DVAR forecast from WRF 4D-Var

Domain size: 91x73x17

Resolution: 45 km

Time Window: 6 Hours,

Observations: GTS conventional observations, bogus data from CWB

### **Typhoon Haitang Verification**



48-h forecast typhoon tracks from FGS, AVN, 3DVAR, FGAT, 4DVAR, together with the observed best track. Forecasts are all started from 0000 UTC 16 July 2005.



## KMA Heavy Rain Case



- **Period**: 12 UTC 4 May 00 UTC 9 May, 2006
- **Grid** : (60,54,31)
- **Resolution** : 30km
- **Domain size**: the same as the operational 10km do-main.
- Assimilation window: 6 hours
- Warm started cycling run

### **Precipitation Verification**



Feb. 4th 2009

WRF-Var Tutorial 2009

### The first radar data assimilation experiment using WRF 4D-Var Yong-Run Guo

- **TRUTH** ----- Initial condition from TRUTH (13-h forecast initialized at 2002061212Z from AWIPS 3-h analysis) run cutted by ndown, boundary condition from NCEP GFS data.
- **NODA** ----- Both initial condition and boundary condition from NCEP GFS data.
- **3DVAR** ----- 3DVAR analysis at 2002061301Z used as the initial condition, and boundary condition from NCEP GFS. Only Radar radial velocity at 2002061301Z assimilated (total # of data points = 65,195).
- **4DVAR** ----- 4DVAR analysis at 2002061301Z used as initial condition, and boundary condition from NCEP GFS. The radar radial velocity at 4 times: 200206130100, 05, 10, and 15, are assimilated (total # of data points = 262,445).

#### Hourly precipitation ending at 03-h forecast





#### Hourly precipitation ending at 06-h forecast



### Real data experiments



### IKE----Domain Configuration (From Fuqing Zhang, real time setup)



Period: 2008091000-2008091500

IC is from 6h forecast.

Votex following moving nest domains:

D1: 160x121x35, 40.5 km

D2: 160x121x35, 13.5 km (moving domain from beginning, interpolated from mother domain )

D3: 253x253x35, 4.5 km (moving domain from beginning, interpolated from mother domain)

| & nhueice            |        |     |      |        |
|----------------------|--------|-----|------|--------|
|                      | -      | -   | -    | -      |
| mp_physics           | = 6,   | 6,  | 6,   | 6,     |
| ra_lw_physics        | = 1,   | 1,  | 1,   | 1,     |
| ra_sw_physics        | = 1,   | 1,  | 1,   | 1,     |
| radt                 | = 30,  | 30, | , 30 | ), 30, |
| sf sfclay physics    | = 1,   | 1,  | 1,   | 1,     |
| sf surface physics   | = 1,   | 1,  | 1,   | 1,     |
| bl pbl physics       | = 1,   | 1,  | 1,   | 1,     |
| bldt                 | = 0,   | 0,  | 0,   | 0,     |
| cu_physics           | = 3,   | 0,  | 0,   | 0,     |
| cudt                 | = 5,   | 5,  | 5,   | 5,     |
| isfflx               | = 1,   |     |      |        |
| ifsnow               | = 0,   |     |      |        |
| icloud               | = 1,   |     |      |        |
| surface input source | = 1,   |     |      |        |
| num soil layers      | = 5,   |     |      |        |
| maxiens              | = 1,   |     |      |        |
| maxens               | = 3,   |     |      |        |
| maxens2              | = 3,   |     |      |        |
| maxens3              | = 16.  |     |      |        |
| ensdim               | = 144. |     |      |        |
| /                    | ,      |     |      |        |

### Conventional Obs.

| Time     | 1   | 2    | 3   | 4    | 5    | 6    | 7    |
|----------|-----|------|-----|------|------|------|------|
| Sound    | 62  |      |     |      |      |      |      |
| Synop    | 126 |      |     |      |      |      | 214  |
| Pilot    | 60  |      |     |      |      |      |      |
| Satem    | 62  | 25   |     |      |      |      |      |
| Geoamv   |     |      |     | 4175 | 2168 | 1452 |      |
| Airep    | 488 | 16   | 5   |      |      | 23   | 81   |
| Gpspw    | 203 | 404  | 200 |      |      | 196  | 193  |
| Gpsrf    |     | 2    |     |      |      | 2    | 4    |
| Ships    | 97  | 115  |     |      |      | 106  |      |
| Metar    | 903 | 643  |     |      |      |      | 1178 |
| Qscat    |     |      |     |      |      |      |      |
| Profiler | 54  | 6760 |     |      |      |      |      |
| Buoy     | 642 | 1277 | 141 |      | 19   | 1126 | 634  |
| Sond_sfc | 62  |      |     |      |      |      |      |

Feb. 4th 2009



### Hurricane Intensity



- For general cases, the performance of WRF 4D-Var is comparable with WRF 3D-Var.
- For some fast developing, fine scale cases such as squall line, tropical cyclone, heavy rainfall case, WRF 4D-Var does a much better job than 3D-Var.

# Software Engineering Performance of WRF 4D-Var

- Ability to assimilation all kinds of observation as 3D-Var (include Radiance and Radar).
- Both serial and parallel runs are supported.
- Tested Platforms: IBM with XLF, Linux with PGI & G95, Mac Intel with G95 & GFORTRAN.

### Computational Efficiency of IKE case on NCAR Bluefire



# Timing of a Radar Assimilation Case on IBM bluefire

![](_page_20_Figure_1.jpeg)

Wall-clock time

WRF-Var Tutorial 2009

# **On-going Works**

- Remove Disk IO which is used as communication among WRF 4D-Var components, ESMF is a candidate.(~50% wall-clock time reduction, improve parallel scalability)
- Improve the portability.
- Prepare the WRF 4D-Var release with WRF 3.1 in Spring.