

WRF 4D-Var

Xin Zhang Xiang-Yu Huang Yongrun Guo

NCAR Earth System Laboratory

Presented on August 4, 2010 WRFDA Tutorial

NCAR is sponsored by the National Science Foundation

Zhang, Huang and Guo

4D-Var versus 3D-Var (Adopted from ECMWF training Course 2008)

• 4D-Var is comparing observations with background model fields at the correct time

- 4D-Var is comparing observations with background model fields at the correct time
- 4D-Var can use observations from frequently reporting stations

- 4D-Var is comparing observations with background model fields at the correct time
- 4D-Var can use observations from frequently reporting stations
- The dynamics and physics of the forecast model in an integral part of 4D-Var, so observations are used in a meteorologically more consistent way

- 4D-Var is comparing observations with background model fields at the correct time
- 4D-Var can use observations from frequently reporting stations
- The dynamics and physics of the forecast model in an integral part of 4D-Var, so observations are used in a meteorologically more consistent way
- 4D-Var combines observations at different times during the 4D-Var window in a way that reduces analysis error

- 4D-Var is comparing observations with background model fields at the correct time
- 4D-Var can use observations from frequently reporting stations
- The dynamics and physics of the forecast model in an integral part of 4D-Var, so observations are used in a meteorologically more consistent way
- 4D-Var combines observations at different times during the 4D-Var window in a way that reduces analysis error
- 4D-Var propagates information horizontally and vertically in a meteorologically more consistent way

Incremental 4D-Var formulation

 $J=J_b+J_o$

Incremental 4D-Var formulation

 $J = J_b + J_o$

Define analysis increment: $\delta \mathbf{x} = \mathbf{x} - \mathbf{x}_{\mathbf{b}}$

Zhang, Huang and Guo WRF

Incremental 4D-Var formulation

 $J=J_b+J_o$

Define analysis increment: $\delta \mathbf{x} = \mathbf{x} - \mathbf{x_b}$

$$J_b = \frac{1}{2} \delta \mathbf{x}^T \mathbf{B}^{-1} \delta \mathbf{x}$$

Incremental 4D-Var formulation

 $J=J_b+J_o$

Define analysis increment: $\delta \mathbf{x} = \mathbf{x} - \mathbf{x_b}$

$$J_b = \frac{1}{2} \delta \mathbf{x}^T \mathbf{B}^{-1} \delta \mathbf{x}$$

$$J_o = \frac{1}{2} \sum_{k=1}^{K} [(\overbrace{\mathbf{y}_k - H_k M_k \mathbf{x}_b}^{innovation} - \mathbf{H}_k \mathbf{M}_k \delta \mathbf{x})^T \mathbf{R}^{-1} \\ (\mathbf{y}_k - H_k M_k \mathbf{x}_b - \mathbf{H}_k \mathbf{M}_k \delta \mathbf{x})]$$

To find the $\delta \mathbf{x}$ which lead the J to minimal:

$$\nabla_{\delta \mathbf{x}} J = \mathbf{0}$$

To find the $\delta \mathbf{x}$ which lead the J to minimal:

$$\nabla_{\delta \mathbf{x}} J = \mathbf{0}$$

$$\nabla_{\delta \mathbf{x}} J_b = \mathbf{B}^{-1} \delta \mathbf{x}$$

To find the $\delta \mathbf{x}$ which lead the J to minimal:

 $\nabla_{\delta \mathbf{x}} J = \mathbf{0}$

$$abla_{\delta \mathbf{x}} J_b = \mathbf{B}^{-1} \delta \mathbf{x}$$

$$\nabla_{\delta \mathbf{x}} J_o = \sum_{k=1}^{K} \left[\underbrace{\mathbf{M}_k^T}_{\mathsf{WRF}-\mathsf{AD}} \mathbf{H}_k^T \mathbf{R}^{-1} (\mathbf{y}_k - H_k \underbrace{M_k}_{\mathsf{WRF}-\mathsf{NL}} \mathbf{x}_b - \mathbf{H}_k \underbrace{\mathbf{M}_k}_{\mathsf{WRF}-\mathsf{TL}} \delta \mathbf{x}) \right]$$

To find the $\delta \mathbf{x}$ which lead the J to minimal:

 $\nabla_{\delta \mathbf{x}} J = \mathbf{0}$

$$abla_{\delta \mathbf{x}} J_b = \mathbf{B}^{-1} \delta \mathbf{x}$$

$$\nabla_{\delta \mathbf{x}} J_o = \sum_{k=1}^{K} \left[\underbrace{\mathbf{M}_k^T}_{\mathsf{WRF}\mathsf{-}\mathsf{AD}} \mathbf{H}_k^T \mathbf{R}^{-1} (\mathbf{y}_k - H_k \underbrace{\mathbf{M}_k}_{\mathsf{WRF}\mathsf{-}\mathsf{NL}} \mathbf{x}_b - \mathbf{H}_k \underbrace{\mathbf{M}_k}_{\mathsf{WRF}\mathsf{-}\mathsf{TL}} \delta \mathbf{x}) \right]$$

 M_k : Model integration from step 0 to step k.

To find the $\delta \mathbf{x}$ which lead the J to minimal:

 $\nabla_{\delta \mathbf{x}} J = \mathbf{0}$

$$abla_{\delta \mathsf{x}} J_b = \mathsf{B}^{-1} \delta \mathsf{x}$$

$$\nabla_{\delta \mathbf{x}} J_o = \sum_{k=1}^{K} \left[\underbrace{\mathbf{M}_k^T}_{\mathsf{WRF}\mathsf{-}\mathsf{AD}} \mathbf{H}_k^T \mathbf{R}^{-1} (\mathbf{y}_k - H_k \underbrace{\mathbf{M}_k}_{\mathsf{WRF}\mathsf{-}\mathsf{NL}} \mathbf{x}_b - \mathbf{H}_k \underbrace{\mathbf{M}_k}_{\mathsf{WRF}\mathsf{-}\mathsf{TL}} \delta \mathbf{x}) \right]$$

 M_k : Model integration from step 0 to step k.

 \mathbf{M}_k : tangent linear model and \mathbf{M}_k^T : adjoint model are needed

Structure of WRF 4D-Var

▲日 ◆ 4 雪 ◆ 4 雪 ◆ 4 雪 ◆ 9 0 0 0

Zhang, Huang and Guo

Structure of WRF 4D-Var (Cont'd)

9 0		<u> </u>	working	
Þ				
EVICES	Nam	 Date Modified 	Size	Kind
MacHD	ad ad	Today	37 MB	Folder
ULIB	afol	Today	23.8 MB	Plain text
Users	af02	Today	23.8 MB	Plain text
Disk	af03 adjoint	Today	23.8 MB	Plain text
	af04 forcing	Today	23.8 MB	Plain text
SHARED	af05	Today	23.8 MB	Plain text
acacia	af06	Today	23.8 MB	Plain text
acorn	af07	Today	23.8 MB	Plain text
alder	be.dat	Today	4 KB	Alias
amia	da_wrfvar.exe	Today	4 KB	Alias
apricot	19	Today	4 KB	Alias
arjuna	[fg01	Today	4 KB	Alias
baobab	- fg02	Today	4 KB	Alias
🗒 All	fg03 4D state	Today	4 KB	Alias
ACES	fg04 vector	Today	4 KB	Alias
Desktop	fg05	Today	4 KB	Alias
A xinzhang	Fg06	Today	4 KB	Alias
Applications	1 1007	Today	4 KB	Alias
Documents	gr01) adoiint	Today	4 KB	Alias
	namelist.input	Today	4 KB	Document
SEARCH FOR	(+ = nl)	Today	73 MB	Folder
Today	op01.asci	Today	4 KB	Alias
Yesterday	Dipopolascii	Today	4 KB	Alias
Past Week	D bb03.ascii	Today	4 KB	Alias
All Images	Dob04.ascii	Today	4 KB	Alias
All Movies	b05.ascii	Today	4 KB	Alias
All Documents	D ob06.ascii	Today	4 KB	Alias
	e ob07.ascii	Today	4 KB	Alias
	(> = t)	Today	15 MB	Folder
	HON	Today	23.8 MB	Plain text
	t102	Today	4 KB	Alias
	ti03 Ti state	Today	4 KB	Alias
	ti04	Today	4 KB	Alias
	tios vector	Today	4 KB	Alias
	1 tl06	Today	4 KB	Alias
	107	Today	4 KB	Alias
	wrfbdy d01	Today	4 KB	Alias
	wrfinput d01	Today	4 KB	Alias

Zhang, Huang and Guo

Observations used by 4D-Var

Conventional observational data

Zhang, Huang and Guo V

Observations used by 4D-Var

- Conventional observational data
- Radar radial velocity

Zhang, Huang and Guo W

Observations used by 4D-Var

- Conventional observational data
- Radar radial velocity
- Radiance satellite data (under testing)

Observations used by 4D-Var

- Conventional observational data
- Radar radial velocity
- Radiance satellite data (under testing)

Zhang, Huang and Guo WRF 4

Observations used by 4D-Var

- Conventional observational data
- Radar radial velocity
- Radiance satellite data (under testing)

Zhang, Huang and Guo

Weak constraint with digital filter

Weak constraint with digital filter

Zhang, Huang and Guo

Weak constraint with digital filter (domain averaged surface pressure variation)

<u>।</u> ୬९୯

First radar data assimilation with WRF 4D-Var OSSE 3h precipitation simulation Real Data Experiment

First radar data assimilation with WRF 4D-Var

 TRUTH — Initial condition from TRUTH (13-h forecast initialized at 2002061212Z from AWIPS 3-h analysis) run cutted by ndown, boundary condition from NCEP GFS data.

First radar data assimilation with WRF 4D-Var OSSE 3h precipitation simulation Real Data Experiment

First radar data assimilation with WRF 4D-Var

- TRUTH Initial condition from TRUTH (13-h forecast initialized at 2002061212Z from AWIPS 3-h analysis) run cutted by ndown, boundary condition from NCEP GFS data.
- NODA Both initial condition and boundary condition from NCEP GFS data.

First radar data assimilation with WRF 4D-Var OSSE 3h precipitation simulation Real Data Experiment

First radar data assimilation with WRF 4D-Var

- TRUTH Initial condition from TRUTH (13-h forecast initialized at 2002061212Z from AWIPS 3-h analysis) run cutted by ndown, boundary condition from NCEP GFS data.
- NODA Both initial condition and boundary condition from NCEP GFS data.
- 3DVAR 3DVAR analysis at 2002061301Z used as the initial condition, and boundary condition from NCEP GFS. Only Radar radial velocity at 2002061301Z assimilated (total data points = 65,195).

First radar data assimilation with WRF 4D-Var OSSE 3h precipitation simulation Real Data Experiment

First radar data assimilation with WRF 4D-Var

- TRUTH Initial condition from TRUTH (13-h forecast initialized at 2002061212Z from AWIPS 3-h analysis) run cutted by ndown, boundary condition from NCEP GFS data.
- NODA Both initial condition and boundary condition from NCEP GFS data.
- 3DVAR 3DVAR analysis at 2002061301Z used as the initial condition, and boundary condition from NCEP GFS. Only Radar radial velocity at 2002061301Z assimilated (total data points = 65,195).
- 4DVAR 4DVAR analysis at 2002061301Z used as initial condition, and boundary condition from NCEP GFS. The radar radial velocity at 4 times: 200206130100, 05, 10, and 15, are assimilated (total data points = 262,445).

First radar data assimilation with WRF 4D-Var OSSE 3h precipitation simulation

Init: 0100 UTC Thu 13 Jun 02 (2000 MDT Ted 12 Jun 02)

OSSE 3h precipitation simulation

Dataset: TRUTH EIP: ripsipdb: Fost: 3.00 h Vald: 0400 UTC Thu 13 Jun 02 (2200 HDT Ted 12 Jun 02)

RIP: ripslpdbz Init: 0100 UTC Thu 13 Jun 02 (2200 MDT Ted 12 Jun 02) Dataset: 3DVAR Fost: 3.00 h Total people in :

Zhang, Huang and Guo

First radar data assimilation with WRF 4D-Var Real Data Experiment

Real Data Experiment

4DVAR

CONTOUR PROM 1 TO DOD BY O

Zhang, Huang and Guo

Quick Start Notes

Quick Start

- Install WRFDA, WRFNL and WRFPLUS
 - WRFDA
 - WRFNL : WRF + some parallel controls designed for MPMD
 - WRFPLUS : WRF adjoint and tangent linear codes

Quick Start Notes

Quick Start

- Install WRFDA, WRFNL and WRFPLUS
 - WRFDA
 - WRFNL : WRF + some parallel controls designed for MPMD
 - WRFPLUS : WRF adjoint and tangent linear codes
- Prepare the observations for 4D-Var
 - Run obsproc with $use_for = 4DVAR'$
 - Reference namelist: WRFDA/var/obsproc/namelist.obsproc.4dvar.wrfvar – tut

Quick Start Notes

Quick Start

- Install WRFDA, WRFNL and WRFPLUS
 - WRFDA
 - WRFNL : WRF + some parallel controls designed for MPMD
 - WRFPLUS : WRF adjoint and tangent linear codes
- Prepare the observations for 4D-Var
 - Run obsproc with $use_for = 4DVAR'$
 - Reference namelist: WRFDA/var/obsproc/namelist.obsproc.4dvar.wrfvar - tut
- Setup 4D-Var working directory
 - Reference directory : *WRFDA/var/test/4dvar*
 - See detail in Users' guide Chapter 6

Quick Start Notes

Notes

• WRF 4D-Var is well tested on IBM with XLF

Zhang, Huang and Guo WI

Quick Start Notes

Notes

- WRF 4D-Var is well tested on IBM with XLF
- On Linux with PGI compiler, PGHPF_ZMEM should be equal to yes
 - csh, tcsh : *setenv PGHPF_ZMEM yes*
 - bash, ksh : export PGHPF_ZMEM = yes

Quick Start Notes

Notes

- WRF 4D-Var is well tested on IBM with XLF
- On Linux with PGI compiler, PGHPF_ZMEM should be equal to yes
 - csh, tcsh : *setenv PGHPF_ZMEM yes*
 - bash, ksh : export PGHPF_ZMEM = yes
- On all platforms other than IBM, the calculated gradient might be wrong...

Single executable 4D-Var Consider Lateral boundary condition as control varia

Single executable 4D-Var

WRF NL, AD and TL model will be used as a subroutine in WRF 4D-Var, other than being called via shell scripts.

Non-linear call				
old	call	<pre>da_system ("da_run_wrf_nl.ksh")</pre>		
new	call	da_nl_model		
Tangent linear call				
old	call	<pre>da_system ("da_run_wrfplus_tl.ksh")</pre>		
new	call	da_tl_model		
Adjoint call				
old	call	<pre>da_system ("da_run_wrfplus_ad.ksh")</pre>		
new	call	da_ad_model		

Single executable 4D-Var Upgrading WRFPLUS Consider Lateral boundary condition as control varia

Upgrading WRFPLUS

• New WRF adjoint and tangent linear codes based on the latest WRF codes.

Single executable 4D-Var Upgrading WRFPLUS Consider Lateral boundary condition as control varia

Upgrading WRFPLUS

- New WRF adjoint and tangent linear codes based on the latest WRF codes.
- Significant computational performance improvement due to elimination of disk IO.

Single executable 4D-Var Upgrading WRFPLUS Consider Lateral boundary condition as control varia

Consider Lateral boundary condition as control variable

perturbation potential T at 500hPa Int: 2000-01-25 00:00:00

3.6 3.2 2.8 2.4 2 1.6 1.2 8 4 0 4 8 1.2 1.6

Zhang, Huang and Guo

Single executable 4D-Var Upgrading WRFPLUS Consider Lateral boundary condition as control varia

Consider Lateral boundary condition as control variable

perturbation potential T at 500hPa Int: 2000-01-25_00:00:00

perturbation potential T at 500hPa Int: 2000-01-25 00:00:00

perturbation potential temperature (theta-10) (K)

perturbation potential temperature (theta-t0) (K) at 500 hPa Height (m) at 500 hPa

◆ロ ▶ ◆母 ▶ ◆臣 ▶ ◆臣 ▶ ● 臣 ● のへで

Single executable 4D-Var Upgrading WRFPLUS Consider Lateral boundary condition as control varia

6h evolution w/o LBC control

-3.6 -3.2 -2.8 -2.4 -2 -1.6 -1.2 -0.8 -0.4 0 0.4 0.8 1.2 -1.6 < 큔 > (콜> (콜> (콜)) (콜) (콜) (콜)

Single executable 4D-Var Upgrading WRFPLUS Consider Lateral boundary condition as control varia

6h evolution w/ LBC control

-3.6 -3.2 -2.8 -2.4 -2 -1.6 -1.2 -0.8 -0.4 0 0.4 0.8 1.2 1.6 () +

Single executable 4D-Var Upgrading WRFPLUS Consider Lateral boundary condition as control varia

Thank You

The NESL Mission is: To advance understanding of weather, climate, atmospheric composition and processes; To provide facility support to the wider community; and, To apply the results to benefit society.

NCAR is sponsored by the National Science Foundation

Zhang, Huang and Guo WI