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Tom Auligné Overview of WRF Data Assimilation



Introduction
Simple Scalar Example

Modern Implementations
WRFDA Overview

Motivation

A sufficiently accurate
knowledge of the state of
the atmosphere at the
initial time.
(Today’s weather)

A sufficiently accurate
knowledge of the laws
according to which one
state of the atmosphere
develops from another.
(Tomorrow’s weather)

Vilhelm Bjerknes (1904)
(Peter Lynch)
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Motivation

Initial conditions for Numerical Weather Prediction (NWP)

Calibration and validation

Observing system design, monitoring and assessment

Reanalysis

Better understanding (Model errors, Data errors, Physical
process interactions, etc)

Tom Auligné Overview of WRF Data Assimilation



Introduction
Simple Scalar Example

Modern Implementations
WRFDA Overview

From Empirical to Statistical methods

Successive Correction Method (SCM, Cressman 1959)
Each observation within a radius of influence L is given a
weight w varying with the distance r to the model grid point:
w(r) = L2−r2

L2+r2 (r ≤ L)
Nudging
Physical Initialization (PI), Latent Heat Nudging (LHN)

However...

Relaxation functions are somewhat arbitrary

Good forecast can be replaced by bad observations

Noisy observations can create unphysical analysis

So...

Modern DA techniques are usually statistical

Tom Auligné Overview of WRF Data Assimilation
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Kalman Filter equations

What is the temperature in this room?

Notations

xt : ”True” state

xo : Observation

xb: Background information

d = xo − xb: Innovation or Departure

Hypotheses

Observation and Background errors are uncorrelated,
unbiased, normally distributed, with variance R and B resp.

Analysis xa is ”optimal” in RMSE sense

Linear Analysis: xa = αxo + βxb = xb + α(xo − xb)

Tom Auligné Overview of WRF Data Assimilation
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Kalman Filter equations

Best Linear Unbiased Estimate

The analysis value is xa = xb + α(xo − xb) and its error variance:

A = (xa − xt)(xa − xt) = (1− α)2B + α2R

∂A

∂α
= 2α(B + R)− 2B

∂A

∂α
= 0 ⇒ α =

B

B + R

Best Linear Unbiased Estimate (BLUE)

xa = xb + K (xo − xb) with the definition of the Kalman Gain:

K = B(B + R)−1

and the analysis error variance: A−1 = B−1 + R−1

Statistically, the analysis is better than the observation (A < R)
and the background (A < B)

Tom Auligné Overview of WRF Data Assimilation



Introduction
Simple Scalar Example

Modern Implementations
WRFDA Overview

Kalman Filter equations

Best Linear Unbiased Estimate

The analysis value is xa = xb + α(xo − xb) and its error variance:

A = (xa − xt)(xa − xt) = (1− α)2B + α2R

∂A

∂α
= 2α(B + R)− 2B

∂A

∂α
= 0 ⇒ α =

B

B + R

Best Linear Unbiased Estimate (BLUE)

xa = xb + K (xo − xb) with the definition of the Kalman Gain:

K = B(B + R)−1

and the analysis error variance: A−1 = B−1 + R−1

Statistically, the analysis is better than the observation (A < R)
and the background (A < B)
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Kalman Filter equations

Variational Cost Function

This solution is equivalent to minimizing the cost function:

J(x) =
1

2
(x−xb)TB−1(x−xb) +

1

2
(x−xo)TR−1(x−xo) = Jb +Jo

Proof:
OJ = B−1(x − xb) + R−1(x − xo) = 0

⇒ xa = xb +
B

B + R
(xo − xb)

= xb + K (xo − xb)

Tom Auligné Overview of WRF Data Assimilation
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Kalman Filter equations

Analysis Accuracy

from Bouttier and Courtier 1999

Quality of the Analysis

The precision is defined by the convexity or Hessian A = J ′′−1
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Kalman Filter equations

Conditional Probabilities

According to Bayes Theorem, the joint pdf of x and xo is:

P(x ∧ xo) = P(x |xo)P(xo) = P(xo |x)P(x)

Since P(xo) = 1, P(x |xo) = P(xo |x)P(x)

We assumed the background and observation errors were Gaussian:

P(x) = λbe [ 1
2B

(xb−x)2] and P(xo |x) = λoe [ 1
2R

(xo−x)2]

⇒ P(x |xo) = λae [ 1
2R

(xo−x)2+ 1
2B

(xb−x)2] = λae−J(x)

Maximum Likelihood

The minimum of the cost function J is also the estimator of xt
with the maximum likelihood

Tom Auligné Overview of WRF Data Assimilation
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Kalman Filter equations

Partial Conclusions

Under the aforementioned hypotheses, the BLUE:

can be determined analytically through the Kalman gain K

is also the minimum of a cost function J = Jb + Jo

is optimal for minimum variance and maximum likelihood

Tom Auligné Overview of WRF Data Assimilation
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Kalman Filter equations

Sequential Data Assimilation

Forecast model Mi→i+1 = M from step i to i + 1

x t
i+1 = M(x t

i ) + qi

where qi is the model error. As qi is unknown and xa
i is the best

estimate of x t
i , usually: x f

i+1 = M(xa
i )

Forecast error

x f
i+1 − x t

i+1 = M(xa
i )−M(x t

i )− qi ≈Mi (xa
i − x t

i )− qi

M is called the Tangent-Linear code of the non-linear model M

Forecast error covariance matrix

P f
i+1 ≈Mi (xa

i − x t
i )(xa

i − x t
i )TMi + qiqT

i = MiP
a
i M

T
i + Qi
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Kalman Filter equations

Sequential Data Assimilation

We can use the forecast as background for the BLUE calculation

Ki = P f
i (P f

i + R)−1

xa
i = x f

i + K (xo
i − x f

i )

(Pa
i )−1 = (P f

i )−1 + R−1 ⇒ Pa
i = (I − Ki )P f

i

Finally, we can distinguish the model space x from the observation
space y and introduce an Observation Operator H : x 7→ y , which
is linearized: H(xa

i )− H(x t
i ) ≈ H(xa

i − x t
i )

Ki = P f
i H

T
i (HiP

f
i H

T
i + R)−1

xa
i = x f

i + K (yo
i − x f

i )

Pa
i = (I − KiHi )P f

i
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Sequential Data Assimilation
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Kalman Filter equations

The Extended Kalman Filter Algorithm

Analysis step i :

Ki = P f
i H

T
i [HiP

f
i H

T
i + R]−1 (1)

xa
i = x f

i + Ki [y
o − Hx f

i ] (2)

Pa
i = [I − KiHi ]P

f
i (3)

Forecast step from i to i + 1:

x f
i+1 = M(xa

i ) (4)

P f
i+1 = MiP

a
i M

T
i + Qi (5)

Hypotheses

Gaussian distributions of errors

M: Linearization around non-linear Model M

H: Linearization around non-linear Observation Operator H

Tom Auligné Overview of WRF Data Assimilation
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Sequential Algorithms
Smoothers

From scalar to vector: dimensions

x → x
Number of grid points ≈ 107

Dimension of P f , Pa ≈ 107 × 107

yo → yo

Number of observations ≈ 106

Dimension of R ≈ 106 × 106

Tom Auligné Overview of WRF Data Assimilation
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Ensemble Kalman Filter (EnKF)

Hypotheses

Monte Carlo approximation to pdfs

Gaussian distributions used for computing update

Localization in space: for each model grid point, only a few
observations are used to compute the analysis increment.

from Anderson et al.
Tom Auligné Overview of WRF Data Assimilation
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Sequential Algorithms
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Ensemble Kalman Filter (EnKF)

Hypotheses

Monte Carlo approximation to pdfs

Gaussian distributions used for computing update

Localization in space: for each model grid point, only a few
observations are used to compute the analysis increment.

Advantages

Easy to implement and provides estimate of Analysis Accuracy

H and M need not be linearized

Drawbacks

Localization avoids degeneracy from under-sampling and reduces
spurious noise, but it affects model internal balance

Tom Auligné Overview of WRF Data Assimilation
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3D Variational Data Assimilation (3DVar)

Hypotheses

Avoid calculating K by solving the equivalent minimization
problem defined by the cost function:
J(x) = 1

2 (x − xb)TB−1(x − xb) + 1
2 (yo − H(x))TR−1(yo − H(x))

OJ(x) = B−1(x − xb)−HTR−1[y − H(x)]

HT is called the Adjoint of the linearized observation operator

Tom Auligné Overview of WRF Data Assimilation
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Sequential Algorithms
Smoothers

3D Variational Data Assimilation (3DVar)

from Bouttier and Courtier 1999

Minimization Algorithm

Iterative minimizer
→ several simulations

Steepest Descent,
Quasi-Newton, Conjugate
Gradient, etc

Preconditioning

Improve Condition Nb

Faster convergence

Tom Auligné Overview of WRF Data Assimilation
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Sequential Algorithms
Smoothers

Single Observation Experiment
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3D Variational Data Assimilation (3DVar)

Hypotheses

Avoid calculating K by solving the equivalent minimization
problem defined by the cost function:
J(x) = 1

2 (x−xb)TB−1(x−xb)+ 1
2 (yo−H(x))TR−1(yo−H(x))

Advantages

Easy to use with complex observation operators

Can add external weak or penalty constraints Jc

Drawbacks

Sub-optimal for strongly non-linear observation operators

All observations are assumed to be instantaneous
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Sequential Algorithms
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4D Variational Data Assimilation (4DVar)

Hypotheses

Generalization of 3DVar for observations distributed in time

Analysis variable x defined at the beginning of time window

Find model trajectory minimizing the distance to observations

Tom Auligné Overview of WRF Data Assimilation
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Smoothers

4D Variational Data Assimilation (4DVar)

Hypotheses

Generalization of 3DVar for observations distributed in time

Analysis variable x defined at the beginning of time window

Find model trajectory minimizing the distance to observations

The Cost Function becomes:

J(x) =
1

2
(x−xb)TB−1(x−xb)+

1

2
(yo−HM(x))TR−1(yo−HM(x))

OJ(x) = B−1(x − xb)−MTHTR−1[y − HM(x)]

MT is called the Adjoint of the linearized forecast model
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4D Variational Data Assimilation (4DVar)
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Sequential Algorithms
Smoothers

4D Variational Data Assimilation (4DVar)

Hypotheses

Generalization of 3DVar for observations distributed in time

Analysis variable x defined at the beginning of time window

Find model trajectory minimizing the distance to observations

Advantages

Model internal balance is more prone to be respected

Drawbacks

The development and maintenance of the Adjoint model MT

can be cumbersome

Limitation of the ”perfect model” assumption

Tom Auligné Overview of WRF Data Assimilation
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WRF Data Assimilation (WRFDA)
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WRF Data Assimilation (WRFDA)

Community WRF DA System

Regional/Global

Research/Operations

Deterministic/Probabilistic

Algorithms

3DVar, 4DVar (Regional)

Ensemble (ETKF/EnKF)

Hybrid Var/Ens

Model: WRF

ARW, NMM

Tom Auligné Overview of WRF Data Assimilation
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WRFDA Program

NCAR Staff: 20FTE, 10 projects

Ext. collaborators (AFWA, KMA, CWB, BMB): 10 FTE

Community Users: 40

Tom Auligné Overview of WRF Data Assimilation
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WRFDA Observations

Conventional

Surface (SYNOP, METAR, SHIP, BUOY)

Upper Air (TEMP, PIBAL, AIREP, ACARS, TAMDAR)

Bogus

Tropical Cyclone Bogus

Global Bogus

Tom Auligné Overview of WRF Data Assimilation
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WRFDA Observations

Remotely Sensed Retrievals

Atmospheric Motion Vectors (from GEOs and Polar)

SATEM Thickness

Ground-based GPS TPW/Zenith Total Delay

SSM/I oceanic surface wind speed and TPW

Scatterometer oceanic surface winds

Wind Profiler

Radar Radial Velocities and Reflectivities

Satellite Temperature, humidity, thickness profiles

GPS Refractivity (COSMIC)

Tom Auligné Overview of WRF Data Assimilation
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WRFDA Observations

Satellite Radiances (RTTOV or CRTM Radiative Transfer)

HIRS (from NOAA-16, 17, 18 and METOP-2)

AMSU-A (from NOAA-15, 16, 18, EOS-Aqua and METOP-2)

AMSU-B (from NOAA-15, 16, 17)

MHS (from NOAA-18 and METOP-2)

AIRS (from EOS-Aqua)

SSMIS (from DMSP-16)
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www.mmm.ucar.edu/wrf/users/wrfda
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Observations yo

Background xb

Observation Operator H

Innovations yo − H(xb)

Observation Error R

Bkg/Ana Error P f , Pa

Tangent-Linear H, M

Adjoint HT, MT

(Extended) Kalman Filter (quasi-)linear statistical algorithm

Simplifications for practical implementation

Ensemble methods: EnKF

Variational methods: 3DVar, 4DVar
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Warning

WRFDA should NOT be used as a black box

Processing of Observations (Quality Control, Bias Correction)

Modeling of Background and Observation error covariances

Accounting for Model errors and Non-Linearities
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Thank you for your attention...

Tom Auligné Overview of WRF Data Assimilation


	Introduction
	Simple Scalar Example
	Kalman Filter equations

	Modern Implementations
	Sequential Algorithms
	Smoothers

	WRFDA Overview

