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Introduction

Motivation

o A sufficiently accurate
knowledge of the state of
the atmosphere at the
initial time.

(Today's weather)

Vilhelm Bjerknes (1904)
(Peter Lynch)
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Introduction

Motivation

o A sufficiently accurate
knowledge of the state of
the atmosphere at the
initial time.

(Today's weather)

e A sufficiently accurate
knowledge of the laws
according to which one
state of the atmosphere Vilhelm Bjerknes (1904)
develops from another. (Peter Lynch)
(Tomorrow’s weather)
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Introduction

Motivation

Initial conditions for Numerical Weather Prediction (NWP)
Calibration and validation
Observing system design, monitoring and assessment

Reanalysis

Better understanding (Model errors, Data errors, Physical
process interactions, etc)
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Introduction

From Empirical to Statistical methods

@ Successive Correction Method (SCM, Cressman 1959)
Each observation within a radius of influence L is given a
weight w varying with the distance r to the model grid point:
w(r) = £=2(r < 1)

o Nudging

@ Physical Initialization (Pl), Latent Heat Nudging (LHN)
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Introduction

From Empirical to Statistical methods

@ Successive Correction Method (SCM, Cressman 1959)
Each observation within a radius of influence L is given a
weight w varying with the distance r to the model grid point:
w(r) = £=2(r < 1)

o Nudging

@ Physical Initialization (Pl), Latent Heat Nudging (LHN)

However...
@ Relaxation functions are somewhat arbitrary

@ Good forecast can be replaced by bad observations

@ Noisy observations can create unphysical analysis

So...
Modern DA techniques are usually statistical
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Simple Scalar Example
P P Kalman Filter equations

What is the temperature in this room?

Notations
@ x;: "True” state
@ x,: Observation

@ xp: Background information

@ d = x, — xp: Innovation or Departure
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Simple Scalar Example Kalman Filter equations

What is the temperature in this room?

Notations
@ x;: "True” state
@ x,: Observation
@ xp: Background information

@ d = x, — xp: Innovation or Departure

Hypotheses

@ Observation and Background errors are uncorrelated,
unbiased, normally distributed, with variance R and B resp.

@ Analysis x, is "optimal” in RMSE sense

@ Linear Analysis: x; = ax, + 8xp = xp + (X0 — Xp)

Tom Auligné Overview of WRF Data Assimilation



Simple Scalar Example Kalman Filter equations

Best Linear Unbiased Estimate

The analysis value is x; = xp + (X, — Xp) and its error variance:

A= (xs—xt)(xa — xt) = (1 — a)’B + R
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Simple Scalar Example Kalman Filter equations

Best Linear Unbiased Estimate

The analysis value is x; = xp + (X, — Xp) and its error variance:

A= (xs—xt)(xa — xt) = (1 — a)’B + R

0A 0A B
— =2a(B+R)—-2B — = =
O« (B +R) oo 0 = a B+ R
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Simple Scalar Example
P P Kalman Filter equations

Best Linear Unbiased Estimate

The analysis value is x; = xp + (X, — Xp) and its error variance:

A= (xs—xt)(xa — xt) = (1 — a)’B + R

0A 0A B
— =2a(B+R)—-2B — = =
O« (B +R) oo 0 = a B+ R

Best Linear Unbiased Estimate (BLUE)
Xa = xp + K(Xo — xp) with the definition of the Kalman Gain:

K=B(B+R)!

and the analysis error variance: A~ = B~1 + R~!

Statistically, the analysis is better than the observation (A < R)
and the background (A < B)
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Simple Scalar Example Kalman Filter equations

Variational Cost Function

This solution is equivalent to minimizing the cost function:

1 1
J(x) = E(X*Xb)TB_l(X*Xb)+§(X7XO)TR_1(XfXO) =Jp+Jo
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Simple Scalar Example Kalman Filter equations

Variational Cost Function

This solution is equivalent to minimizing the cost function:

J(x) = f(xfxb)TB_l(Xfxb)qL%(Xfxo)TR_l(xfxo) =Jp+Jo

V=B Yx—xp)+ R x—x,)=0

=X, = Xp+ (X0 — Xb)

B+ R
= xp+ K(xo — xp)
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Kalman Filter equations

Simple Scalar Example

from Bouttier and Courtier 1999

Analysis Accuracy

\
/ A
Tix)
/
\
/ large T small J
,/
precise nreliable X
estimare estimare

A
p(x)

Quality of the Analysis
The precision is defined by the convexity or Hessian A = J"~!




Simple Scalar Example Kalman Filter equations

Conditional Probabilities

According to Bayes Theorem, the joint pdf of x and x, is:
P(x A x0) = P(x|xo)P(x0) = P(xo|x)P(x)

Since P(xo) =1, P(x|xo) = P(xo|x)P(x)
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Simple Scalar Example Kalman Filter equations

Conditional Probabilities

According to Bayes Theorem, the joint pdf of x and X, is:
P(x A x0) = P(x|x0)P(x0) = P(xo|x)P(x)
Since P(x,) = 1, P(x|x0) = P(xo|x)P(x)

We assumed the background and observation errors were Gaussian:
P(x) = Moelzz o= and  P(xo|x) = Aoelar(e=)]

= P(x|x0) = A, elzr (o35 (06—x)] — ) o=J(x)

Maximum Likelihood

The minimum of the cost function J is also the estimator of x;
with the maximum likelihood
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Simple Scalar Example Kalman Filter equations

Partial Conclusions

Under the aforementioned hypotheses, the BLUE:
@ can be determined analytically through the Kalman gain K
@ is also the minimum of a cost function J = J, + J,

@ is optimal for minimum variance and maximum likelihood

Tom Auligné Overview of WRF Data Assimilation



Simple Scalar Example
P P Kalman Filter equations

Sequential Data Assimilation

Forecast model M;_,j; 1 = M from step j to i + 1

xfy = M(x{) + qi

where g; is the model error. As g; is unknown and x? is the best
estimate of xf, usually: xf,; = M(x?)
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Simple Scalar Example Kalman Filter equations

Sequential Data Assimilation

Forecast model M;_,j; 1 = M from step j to i + 1 |

xfy = M(x{) + qi

where g; is the model error. As g; is unknown and x? is the best
: t N
estimate of x/, usually: xj,; = M(x7)

Forecast error

xfpy = xfy = MOF) = M(xf) — g = Mi(x? — xf) — a; ’

M is called the Tangent-Linear code of the non-linear model M J
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Simple Scalar Example Kalman Filter equations

Sequential Data Assimilation

Forecast model M;_,j; 1 = M from step j to i + 1 |

xfy = M(x{) + qi

where g; is the model error. As g; is unknown and x? is the best
: t o f
estimate of x/, usually: xj,; = M(x7)

Forecast error
o1 =Xty = M) = M(x) — gi = Mi(xf — xf) — g ’

M is called the Tangent-Linear code of the non-linear model M J

Forecast error covariance matrix ’

'Dif+1 ~ M,'(Xia — Xit)(X,f? — X,-t)TM,' + q,-ql-T = M,'P,-aM,T aF Qi
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Simple Scalar Example
P P Kalman Filter equations

Sequential Data Assimilation

We can use the forecast as background for the BLUE calculation
Ki = PI(P[ + R)™!
x? = xI + K(x? — x))

(P = (PI) '+ R = P? = (1~ K)P

]
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Simple Scalar Example Kalman Filter equations

Sequential Data Assimilation

We can use the forecast as background for the BLUE calculation

K = P(Pf + R)™
x? = xI + K(x? — x))

(P = (PI) '+ R = P? = (1~ K)P

]

Finally, we can distinguish the model space x from the observation
space y and introduce an Observation Operator H : x — y, which
is linearized: H(x?) — H(x!) =~ H(x? — x})

Ki = PfH] (H;PIH] + R)!
X =x{ + K(y® —xf)
P? = (I — KiH;)P!




Simple Scalar Example Kalman Filter equations

The Extended Kalman Filter Algorithm

Analysis step i:

Ki = PIH][H,PIH] + R]! (1)
xi = Xif + Kily® — HXif] (2)
P? = [I — KiH;]Pf (3)
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Simple Scalar Example Kalman Filter equations

The Extended Kalman Filter Algorithm

Analysis step i:

Ki = PIHT[H,PfH] + R (1)
X7 = x] + Kily® — Hx{] (2)
P? = [I — KiH;]P] (3)
Forecast step from i to i + 1:
xf1 = M(x?) (4)
Pl =MiPIM] + G, 5)

Hypotheses
@ Gaussian distributions of errors
@ M: Linearization around non-linear Model M

@ H: Linearization around non-linear Observation Operator H
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Sequentia
Modern Implementations Smoother:

From scalar to vector: dimensions

X — X
Number of grid points ~ 107 .
Dimension of Pf, P2 ~ 107 x 107 , : SATEM Y ans0s

"

yO — yO
Number of observations =~ 10°
Dimension of R ~ 10° x 100
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Sequential Algorithms
Modern Implementations Smoothers

Ensemble Kalman Filter (EnKF)

Hypotheses
@ Monte Carlo approximation to pdfs
@ Gaussian distributions used for computing update

@ Localization in space: for each model grid point, only a few
observations are used to compute the analysis increment.

3 ensemble members advancing in time

analysis prior

—
_____,..---"" tk+1
S ¢
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Sequential Algorithms
Modern Implementations Smoothers

Ensemble Kalman Filter (EnKF)

Hypotheses
@ Monte Carlo approximation to pdfs
@ Gaussian distributions used for computing update

@ Localization in space: for each model grid point, only a few
observations are used to compute the analysis increment.

: ! : y Convert
each model state
h h h to an
expected observation
tk = h(x
* tk+1 y ( )
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Sequential Algorithms
Modern Implementations Smoothers

Ensemble Kalman Filter (EnKF)

Hypotheses
@ Monte Carlo approximation to pdfs
@ Gaussian distributions used for computing update

@ Localization in space: for each model grid point, only a few
observations are used to compute the analysis increment.

' "+ Y  Compare with

h observation and
h observational error
tk distribution
i—___
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Sequential Algorithms
Modern Implementations Smoothers

Ensemble Kalman Filter (EnKF)

Hypotheses
@ Monte Carlo approximation to pdfs
@ Gaussian distributions used for computing update

@ Localization in space: for each model grid point, only a few
observations are used to compute the analysis increment.

1 : : L} y I_.: ! :‘_: :‘_'
A h h . Find the
Increments
tk
_ S

Tom Auligné Overview of WRF Data Assimilation



Sequential Algorithms

Modern Implementations Smoothers

Ensemble Kalman Filter (EnKF)

Hypotheses
@ Monte Carlo approximation to pdfs
@ Gaussian distributions used for computing update

@ Localization in space: for each model grid point, only a few
observations are used to compute the analysis increment.

Tom Auligné

state variable
increments

g4
Overview of WRF Data Assimilation




Sequential Algorithms
Modern Implementations Smoothers

Ensemble Kalman Filter (EnKF)

Hypotheses
@ Monte Carlo approximation to pdfs
@ Gaussian distributions used for computing update

@ Localization in space: for each model grid point, only a few
observations are used to compute the analysis increment.

Advance ensembile ...
and repeat ...
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Sequential Algorithms
Modern Implementations Smoothers

Ensemble Kalman Filter (EnKF)

Hypotheses
@ Monte Carlo approximation to pdfs
@ Gaussian distributions used for computing update

@ Localization in space: for each model grid point, only a few
observations are used to compute the analysis increment.

Advantages
@ Easy to implement and provides estimate of Analysis Accuracy

@ H and M need not be linearized

Drawbacks

Localization avoids degeneracy from under-sampling and reduces
spurious noise, but it affects model internal balance
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Sequential Algorithms
Modern Implementations Smoothers

3D Variational Data Assimilation (3DVar)

Hypotheses

Avoid calculating K by solving the equivalent minimization
problem defined by the cost function:

J(x) = 5(x = x5) "B~ (x = xp) + 5(v° = H(x))TR™(y* = H(x))
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Sequential Algorithms
Modern Implementations Smoothers

3D Variational Data Assimilation (3DVar)

Hypotheses
Avoid calculating K by solving the equivalent minimization

problem defined by the cost function:
J(x) = 3(x = x6) TBH(x = xp) + 3(y° = H(x)) TR} (y° — H(x))

VJ(x) = B} x — xp) — HTR™ [y — H(x)]

HT is called the Adjoint of the linearized observation operator J
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Sequential Algorithms
Modern Implementations Smoothers

3D Variational Data Assimilation (3DVar)

o) Minimization Algorithm

@ lterative minimizer
— several simulations

@ Steepest Descent,
A Quasi-Newton, Conjugate
— g Gradient, etc

/L&v e : Preconditioning
/ \/—‘——’\ = o Improve Condition Nb

>

X o Faster convergence

from Bouttier and Courtier 1999
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Sequential Algorithms
Modern Implementations Smooth

Single Observation Experiment
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Sequential Algorithms
Modern Implementations Smoothers

3D Variational Data Assimilation (3DVar)

Hypotheses

@ Avoid calculating K by solving the equivalent minimization
problem defined by the cost function:
J(x) = 3(x=xb) "B (x—xp)+3(y°—H(x)) TR (y°— H(x))

Advantages
o Easy to use with complex observation operators

o Can add external weak or penalty constraints J.
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Sequential Algorithms
Modern Implementations Smoothers

3D Variational Data Assimilation (3DVar)

Hypotheses

@ Avoid calculating K by solving the equivalent minimization
problem defined by the cost function:
J(x) = 3(x=xb) "B (x—xp)+3(y°—H(x)) TR (y°— H(x))

Advantages
o Easy to use with complex observation operators

o Can add external weak or penalty constraints J.

Drawbacks
@ Sub-optimal for strongly non-linear observation operators

@ All observations are assumed to be instantaneous
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Sequential Algorithms
Smoothers

Modern Implementations

4D Variational Data Assimilation (4DVar)

Hypotheses
@ Generalization of 3DVar for observations distributed in time

@ Analysis variable x defined at the beginning of time window

@ Find model trajectory minimizing the distance to observations

3D-Var

t tn ime

assimilarion window
Tom Auligné Overview of WRF Data Assimilation




Sequential Algorithms
Modern Implementations Smoothers

4D Variational Data Assimilation (4DVar)

Hypotheses
@ Generalization of 3DVar for observations distributed in time
@ Analysis variable x defined at the beginning of time window

o Find model trajectory minimizing the distance to observations

The Cost Function becomes:

J) = G 0ex6) B (xx5) + 5 (v~ HM(x) TRy~ HM(x))

VJ(x) =B Yx = x,) — MTHT Ry — HM(x)]

M7 is called the Adjoint of the linearized forecast model J
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Sequential
Modern Implementations Smoothers

4D Variational Data Assimilation (4DVar)
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Sequential Algorithms
Modern Implementations Smoothers

4D Variational Data Assimilation (4DVar)

Hypotheses
@ Generalization of 3DVar for observations distributed in time
@ Analysis variable x defined at the beginning of time window

@ Find model trajectory minimizing the distance to observations

Advantages

Model internal balance is more prone to be respected
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Sequential Algorithms
Modern Implementations Smoothers

4D Variational Data Assimilation (4DVar)

Hypotheses
@ Generalization of 3DVar for observations distributed in time
@ Analysis variable x defined at the beginning of time window

@ Find model trajectory minimizing the distance to observations

Advantages
Model internal balance is more prone to be respected

Drawbacks

@ The development and maintenance of the Adjoint model M "
can be cumbersome

@ Limitation of the " perfect model” assumption
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WRFDA Overview

WRF Data Assimilation (WRFDA)

WRF Modeling System Flow Chart

WRF Post-
Pre-Processing WRF Model
System

Alternative \deal Data
Obs Data
2D: Hill, Grav, VAPOR
Squall Line & Seabreeze
Conventional
Obs Data

External
Data Source

hd
o
8
13
3
S
a
i

3D: Supercell ; LES
& Baroclinic Waves NCL.
Global: heldsuarez

ARWpost
(GrADS /
Vis5D)

WRFDA
OBSGRID

WRF
Terrestrial
Data

RIP4

ARW MODEL
(includes Chem
& Fire modules)

WPP
(GrADS /
GEMPAK)

wPS — REAL

Gridded Data:

NAM, GFS,
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WRFDA Overview

WRF Data Assimilation (WRFDA)

Community WRF DA System
@ Regional/Global
@ Research/Operations

@ Deterministic/Probabilistic

Algorithms
e 3DVar, 4DVar (Regional)
e Ensemble (ETKF/EnKF)
@ Hybrid Var/Ens

Model: WRF
ARW, NMM
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WRFDA Overview

WRFDA Program

o NCAR Staff: 20FTE, 10 projects
e Ext. collaborators (AFWA, KMA, CWB, BMB): 10 FTE

@ Community Users: 40
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WRFDA Overview

WRFDA Observations

Conventional
e Surface (SYNOP, METAR, SHIP, BUOY)

e Upper Air (TEMP, PIBAL, AIREP, ACARS, TAMDAR)

Bogus
@ Tropical Cyclone Bogus

o Global Bogus
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WRFDA Overview

WRFDA Observations

Remotely Sensed Retrievals
@ Atmospheric Motion Vectors (from GEOs and Polar)
@ SATEM Thickness
@ Ground-based GPS TPW/Zenith Total Delay
@ SSM/I oceanic surface wind speed and TPW
@ Scatterometer oceanic surface winds
Wind Profiler
Radar Radial Velocities and Reflectivities
Satellite Temperature, humidity, thickness profiles
GPS Refractivity (COSMIC)
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WRFDA Overview

WRFDA Observations

Satellite Radiances (RTTOV or CRTM Radiative Transfer)
e HIRS (from NOAA-16, 17, 18 and METOP-2)
e AMSU-A (from NOAA-15, 16, 18, EOS-Aqua and METOP-2)
AMSU-B (from NOAA-15, 16, 17)
MHS (from NOAA-18 and METOP-2)
AIRS (from EOS-Aqua)
SSMIS (from DMSP-16)
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www.mmm.ucar.edu/w

WRFDA Overview

/users/

oD

Most Visited ~

@ @ L

WRFDA Model Users Site

http:/ /www.mmm.ucar.edu/wrf/users wrfda/

WRFDA

wrf-model.org

Public Domain
Notice

Contact WRF
Support

T1 Gmail - Inbox - hans.xy.huang.

Google Q

<) [ Google Calendar O & weroAModel userssite @ [

} f

PAGE &

It

WRF Data Assimilation System Users Page

Search ),

Welcome to the users home page for the Weather
Research and Forecasting (WRF) model data assimilation
system (WRFDA). The WRFDA system is in the public
domain and is freely available for community use. It is
designed to be a flexible, state-of-the-art atmospheric
data assimilation system that is portable and efficient on
available parallel computing platforms. WRFDA is suitable
for use in a broad range of applications across scales
ranging from kilometers of regional mesoscale to
thousands of kilometers of global scales.

The Mesoscale and Microscale Meteorology Division of
NCAR is currently maintaining and supporting a subset of
the overall WRF code (Version 3) that includes:

WRF Tutorials - January 26 -
February 5, 2009, Boulder, Colorado.

WRF Version 3.1 Release
Information

WRF Version 3.0.1.1 Release:
August 22, 2008

WREF Var Version 3.0.1.1 Release:
August 29, 2008

New 'Known Problems' posts for V3
WRF (1/6/09) and WPS (8/4/08)

The 9th WRF Users' Workshop was
held June 23 - 27, 2008 in Boulder,
Colorado. Workshop Presentations is .
now online. Y

Z
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WRFDA Overview

Conclusions

Observations y°
Background x
Observation Operator H

Innovations y° — H(xp)

@ Observation Error R

o Bkg/Ana Error Pf, P2
@ Tangent-Linear H, M
o Adjoint HT, MT
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WRFDA Overview

Conclusions

@ Observations y°
e Background xp
@ Observation Operator H

@ Innovations y° — H(xp)

@ Observation Error R

o Bkg/Ana Error Pf, P2
@ Tangent-Linear H, M
o Adjoint HT, MT

(Extended) Kalman Filter (quasi-)linear statistical algorithm )
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WRFDA Overview

Conclusions

@ Observations y° @ Observation Error R

e Background x o Bkg/Ana Error Pf, P2

@ Observation Operator H @ Tangent-Linear H, M

@ Innovations y° — H(xp) o Adjoint HT, MT
(Extended) Kalman Filter (quasi-)linear statistical algorithm )

Simplifications for practical implementation
@ Ensemble methods: EnKF
@ Variational methods: 3DVar, 4DVar
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WRFDA Overview

Conclusions

Warning
WRFDA should NOT be used as a black box

@ Processing of Observations (Quality Control, Bias Correction)
@ Modeling of Background and Observation error covariances

@ Accounting for Model errors and Non-Linearities
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WRFDA Overview

Thank you for your attention...
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