Recent Developments of WRF 4D-Var

Xin Zhang, Xiang-Yu Huang, Yong-Run Guo

MMM Division, NCAR, Boulder, CO USA

Nils Gustafsson

Swedish Meteorological and Hydrological Institute, Norrkoping, Sweden

Meng Zhang

Penn State University, PE, USA

- Why is 4D-Var's performance better than 3D-Var's?
- Overview of the WRF 4D-Var
- Observations used by the data assimilation system
- Weak constraint with digital filter
- Multi-incremental 4D-Var
- Lateral boundary control in 4D-Var
- Recent performance of WRF 4D-Var System
- Computational issues
- Further developments

4D-Var versus 3D-Var (Adopted from ECMWF training Course 2008)

- 4D-Var is comparing observations with background model fields at the correct time
- 4D-Var can use observations from frequently reporting stations
- The dynamics and physics of the forecast model in an integral part of 4D-Var, so observations are used in a meteorologically more consistent way
- 4D-Var combines observations at different times during the 4D-Var window in a way that reduces analysis error
- 4D-Var propagates information horizontally and vertically in a meteorologically more consistent way

- Why is 4D-Var's performance better than 3D-Var's?
- Overview of the WRF 4D-Var
- Observations used by the data assimilation system
- Weak constraint with digital filter
- Multi-incremental 4D-Var
- Lateral boundary control in 4D-Var
- Recent performance of WRF 4D-Var System
- Computational issues
- Further developments

Four-dimensional Variational Approach

The general cost function of the variational formulation:

$$J(\mathbf{x}) = \frac{1}{2} (\mathbf{x}_0 - \mathbf{x}^b)^T \mathbf{B}^{-1} (\mathbf{x}_0 - \mathbf{x}^b) + J_x$$

+
$$\frac{1}{2} \sum_{k=0}^{K} [\mathbf{h}(\mathbf{x}_k) - \mathbf{y}_k]^T \mathbf{R}_k^{-1} [\mathbf{h}(\mathbf{x}_k) - \mathbf{y}_k]$$

where

- $\mathbf{x} \equiv [\mathbf{x}_0, \mathbf{x}_1, \cdots, \mathbf{x}_K]^T$ is a 4-dimensional state vector;
- h is the nonlinear observation operator;
- B and R_k are the background, and observation error covariances, respectively;
- J_x represents extra constraint (e.g., balance).

Strong Constraint Incremental 4DVAR (Courtier, Thépaut and Hollingsworth (1994))

For simplicity consider now the strong constraint case. In incremental 4DVAR the cost function at the j-th iteration is

- $\delta \mathbf{x}_j \equiv \mathbf{x}_j \mathbf{x}_{j-1}$ is the control variable;
- The inner loop minimization of J_j can be solved by Conjugate gradient or Lanczos

Structure of WRF 4D-Var

Structure of WRF 4D-Var (Cont'd)

000	in working			
		•		
▼ DEVICES	Name	Date Modified	Size	Kind
🔜 MacHD	e ad	Today	37 MB	Folder
📃 ULib	afo1	Today	23.8 MB	Plain text
Users	af02	Today	23.8 MB	Plain text
iDisk	af03 adjoint	Today	23.8 MB	Plain text
_	af04 forcing	Today	23.8 MB	Plain text
V SHARED	af05	Today	23.8 MB	Plain text
acacia	af06	Today	23.8 MB	Plain text
acorn	af07	Today	23.8 MB	Plain text
alder	le dat	Today	4 KB	Alias
amia	🖉 da wrfvar.exe	Today	4 KB	Alias
apricot	. Ig	Today	4 KB	Alias
arjuna 🔤	🚽 🗗 🖌 🖌	Today	4 KB	Alias
Jaobab	🚽 fg02	Today	4 KB	Alias
(!!!) All	fg03 4D state	Today	4 KB	Alias
▼ PLACES	fg04 vector	Today	4 KB	Alias
🌉 Desktop	🔤 fg05	Today	4 KB	Alias
👚 xinzhang	🗐 🗐 🕞	Today	4 KB	Alias
Applications		Today	4 KB	Alias
Documents	gr01 adojint	Today	4 KB	Alias
	namelist.input	Today	4 KB	Document
V SEARCH FOR	🕒 🖬 nl 🔪 📉	Today	73 MB	Folder
Today	op01.ascil	Today	4 KB	Alias
(L) Yesterday	b02.ascii	Today	4 KB	Alias
Past Week	bb03.ascii	Today	4 KB	Alias
All Images	🔎 ob04.ascii	Today	4 KB	Alias
All Movies	🔎 ob05.ascii 🖊	Today	4 KB	Alias
All Documents	🔊 obQ6.ascji	Today	4 KB	Alias
	🔁 ob07.ascii	Today	4 KB	Alias
	🜔 🗰 tl 丿	Today	15 MB	Folder
	101	Today	23.8 MB	Plain text
		Today	4 KB	Alias
	tl03 TL state	Today	4 KB	Alias
	ti04 vector	Today	4 KB	Alias
	1 tl05	Today	4 KB	Alias
	🛃 tl06 /	Today	4 KB	Alias
		Today	4 KB	Alias
	wrfbdy_d01	Today	4 KB	Alias
	🔎 wrfinput_d01	Today	4 KB	Alias

WRFDA 2010 Feb. Tutorial

- Why is 4D-Var's performance better than 3D-Var's?
- Overview of the WRF 4D-Var
- Observations used by the data assimilation system
- Weak constraint with digital filter
- Multi-incremental 4D-Var
- Lateral boundary control in 4D-Var
- Recent performance of WRF 4D-Var System
- Computational issues
- Further developments

Observations used by the 4D-Var

- Conventional observation data
- Radar radial velocity
- Radiance satellite data (under testing)

- Why is 4D-Var's performance better than 3D-Var's ?
- Overview of the WRF 4D-Var
- Observations used by the data assimilation system
- Weak constraint with digital filter
- Multi-incremental 4D-Var
- Lateral boundary control in 4D-Var
- Recent performance of WRF 4D-Var System
- Computational issues
- Further developments

Weak constraint with digital filter

Weak constraint with digital filter

(domain averaged surface pressure variation)

WRFDA 2010 Feb. Tutorial

- Why is 4D-Var's performance better than 3D-Var's ?
- Overview of the WRF 4D-Var
- Observations used by the data assimilation system
- Weak constraint with digital filter
- Multi-incremental 4D-Var
- Lateral boundary control in 4D-Var
- Recent performance of WRF 4D-Var System
- Computational issues
- Further developments

Multi-incremental WRF 4D-Var

(Adopted from ECMWF training course 2008)

Multi-incremental WRF 4D-Var procedure

(Under testing)

Use all data in a 6-hour window (0900-1500 UTC for 1200 UTC analysis)

- **1. Group observations into 1 hour time slots**
- 2. Run the (15km) high resolution forecast from the previous analysis and compute "observation"- "model" differences
- 3. Adjust the model fields at the start of assimilation window (0900 UTC) so the 6-hour forecast better fits the observations. This is an iterative process using a lower resolution linearized model (45km) and its adjoint model
- 4. Rerun the (15km) high resolution model from the modified (improved) initial state and calculate new observation departures
- 5. The 3-4 loop is repeated two times to produce a good high resolution estimate of the atmospheric state the result is the WRF 4D-Var analysis

- Why is 4D-Var's performance better than 3D-Var's ?
- Overview of the WRF 4D-Var
- Observations used by the data assimilation system
- Weak constraint with digital filter
- Multi-incremental 4D-Var
- Lateral Boundary Control in 4D-Var
- Recent performance of WRF 4D-Var System
- Computational issues
- Further developments

Lateral Boundary in WRF

WRF uses a boundary relaxation applied in a "nudging" of model tendencies, following Davies and Turner (1977):

$$\frac{\partial \mathbf{x}}{\partial t} = F_1(\mathbf{x}_{\rm lbc} - \mathbf{x}) - F_2 \Delta^2(\mathbf{x}_{\rm lbc} - \mathbf{x})$$

 X_{lbc} is the corresponding boundary value provided by the host model, which is specified in the following form:

$$\mathbf{x}_{\text{lbc}}(time = t) = \mathbf{x}_{\text{lbc}}(time = t_0) + (t - t_0) \frac{\partial \mathbf{x}_{\text{lbc}}}{\partial t}$$

4D-Var LBC control

Considering a data assimilation window from time t_0 until time t_k and having $\delta \mathbf{x}(t_0)$ and $\delta \mathbf{x}_{lbc}(t_k)$ as the assimilation control variables, the quantities needed for the LBC of the tangent linear WRF model are given by

$$\delta \mathbf{x}_{\rm lbc}(t_0) = \delta \mathbf{x}(t_0) \tag{4}$$

$$\frac{\partial \delta \mathbf{x}_{\rm lbc}}{\partial t} = \frac{\delta \mathbf{x}_{\rm lbc}(t_k) - \delta \mathbf{x}(t_0)}{t_k - t_0} \tag{5}$$

4D-Var LBC control (Cont'd)

The lateral boundary conditions for the adjoint model, $\mathbf{x}_{lbc}^{AD}(t_0)$ and $(\frac{\partial \mathbf{x}_{lbc}}{\partial t})^{AD}$, will be initialized with zeroes at the end of the data assimilation window (time t_k). After the backwards integration of the adjoint model to time t_0 the adjoint control variables (or the error gradients) can be obtained from:

$$\mathbf{x}^{\mathrm{AD}}(t_0) = \mathbf{x}_{\mathrm{inner}}^{\mathrm{AD}}(t_0) + \mathbf{x}_{\mathrm{lbc}}^{\mathrm{AD}}(t_0) - \frac{1}{t_k - t_0} (\frac{\partial \mathbf{x}_{\mathrm{lbc}}}{\partial t})^{\mathrm{AD}}$$
(6)

$$\mathbf{x}_{\rm lbc}^{\rm AD}(t_k) = \frac{1.}{t_k - t_0} \left(\frac{\partial \mathbf{x}_{lbc}}{\partial t}\right)^{\rm AD} \tag{7}$$

where $\mathbf{x}_{\text{inner}}^{\text{AD}}(t_0)$ denotes the inner domain adjoint model model variable as provided at the initial time t_0 .

WRFDA 2010 Feb. Tutorial

Validation Experiment 1

A single 500hPa Temperature observation at 6 hour which is <u>far from</u> the boundary

Pert. Potential Temperature at 0 hour

Without LBC control

With LBC control

+ is the location of T observation at 6 hour

75°W

.32

Pert. Potential Temperature at 1-6 hour

Without LBC control

With LBC control

Validation Experiment 2

A single 500hPa Temperature observation at 6 hour which is <u>close to</u> the boundary

Pert. Potential Temperature at 0 hour

Without LBC control

With LBC control

+ is the location of T observation at 6 hour

Pert. Potential Temperature at 1-6 hour

Without LBC control

With LBC control

- Why is 4D-Var's performance better than 3D-Var's ?
- Overview of the WRF 4D-Var
- Observations used by the data assimilation system
- Weak constraint with digital filter
- Multi-incremental 4D-Var
- Lateral Boundary Control in 4D-Var
- Recent performance of WRF 4D-Var System
- Computational issues
- Further developments

WRF 3D/4D-Var for Katrina 2005

•WRF Domains : D1-D3 with 40.5km, 13.5km, 4.5 km grids and 35 vertical levels; Data assimilations only applied on D1

•Forecasts: 96-h deterministic run with D1, D2, D3 (two-way nested and D3 movable) initialized from 00Z August 26 2005 with various ICs

•Data assimilated: Doppler radial velocity (err=3m/s) from KMAX and KBYX during 00~03Z August 26 2005

Experiments:

- a) Control run with GFS-IC
- b) 4DVAR with 1-h and 3-h window
- c) Successive 3DVAR with 1-h interval at 01Z, 02Z and 03Z respectively

Track and Intensity forecasts

First radar data assimilation with WRF 4D-Var

- TRUTH ----- Initial condition from TRUTH (13-h forecast initialized at 2002061212Z from AWIPS 3-h analysis) run cutted by ndown, boundary condition from NCEP GFS data.
- NODA ----- Both initial condition and boundary condition from NCEP GFS data.
- 3DVAR -----3DVAR analysis at 2002061301Z used as the initial condition, and boundary condition from NCEP GFS. Only Radar radial velocity at 2002061301Z assimilated (total # of data points = 65,195).
- 4DVAR ----- 4DVAR analysis at 2002061301Z used as initial condition, and boundary condition from NCEP GFS. The radar radial velocity at 4 times: 200206130100, 05, 10, and 15, are assimilated (total # of data points = 262,445).

Hourly precipitation at 03h forecast

Datesset: TRUTH KIF: ripsipdbz Fest: 3.00 h Valid: 0400 UTC Thu 13 Jun 02 (2200 MDT Wed 12 Jun 02) Total preadp. in past 1 h See-level pressure

Dateset: 3DVAR RIP: ripslpdbz Init: 0100 UTC Thu 13 Jun 02 Fest: 300 h Valid: 0400 UTC Thu 13 Jun 92 (2200 MDT Wed 12 Jun 02) Total predp. in past 1 h See-level

Datesset: FG RIP: ripslpdbz Init: 0100 UTC Thu 13 Jun 02 Fost: 3.00 h Valid: 0400 UTC Thu 13 Jun 02 (2200 MDT Wed 12 Jun 02) Total presh in past 1 h Sea-level pressure

Dataset: 4DVARs RIF: ripshodbz Fort: 3:00 h Sec. 3:00

Radar data assimilation (cont'd) Real data experiments

61.0

WRFDA 2010 Feb. Tutorial

Feb. 2010

- Why is 4D-Var's performance better than 3D-Var's ?
- Overview of the WRF 4D-Var
- Observations used by the data assimilation system
- Weak constraint with digital filter
- Multi-incremental 4D-Var
- Lateral Boundary Control in 4D-Var
- Recent performance of WRF 4D-Var System
- Computational issues
- Further developments

Computational Efficiency of IKE hurricane case on NCAR Bluefire

WallClock Time (63 Iterations)

Memory Usage (63 Iterations)

Past: Before optimization

Current: Eliminate the disk IO for basic states

Working: Reorganizing adjoint codes, reduce re-computation.

Radar Assimilation Case on IBM bluefire

Wall-clock time

Domain size:151x118x31

Resolution:4km

Time-step: 20s

Time window:30m

of iterations: 60

Obs.: OSSE radar wind

of obs.: 262,517

Obs Freq: 5m

Feb. 2010

- Why is 4D-Var's performance better than 3D-Var's ?
- Overview of the WRF 4D-Var
- Observations used by the data assimilation system
- Weak constraint with digital filter
- Multi-incremental 4D-Var
- Lateral Boundary Control in 4D-Var
- Recent performance of WRF 4D-Var System
- Computational issues
- Further developments

Further Developments

- ESMF coupling: ESMF will be used to couple WRFNL, WRFPLUS and WRFDA together.
- Improve the current WRF adjoint and tangent Linear codes.

Thank You !