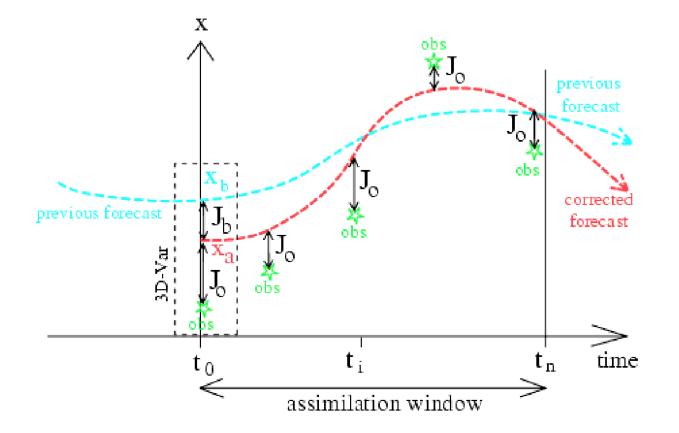
WRF Four-dimensional variational data assimilation system Tutorial for V3.3

Xin Zhang Xiang-Yu Huang

NCAR Earth System Laboratory

Presented in July 2011, WRFDA Tutorial

NCAR is sponsored by the National Science Foundation



Pre-requirements to run WRF 4D-Var

- ► Knowledge and experience to run WRF model
- ► Knowledge and experience to run WRFDA (3D-Var)
- WRF 4D-Var V3.3 is quite different from its previous versions, so no experience for previous WRF 4D-Var versions required.

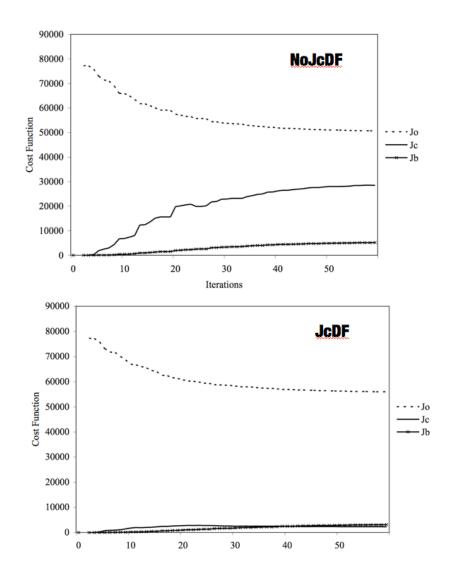
4D-Var versus 3D-Var (Adopted from ECMWF training Course)

4D-Var versus 3D-Var (Adopted from ECMWF training Course)

- 4D-Var is comparing observations with background model fields at the correct time
- 4D-Var can use observations from frequently reporting stations
- The dynamics and physics of the forecast model in an integral part of 4D-Var, so observations are used in a meteorologically more consistent way
- 4D-Var combines observations at different times during the 4D-Var window in a way that reduces analysis error
- 4D-Var propagates information horizontally and vertically in a meteorologically more consistent way

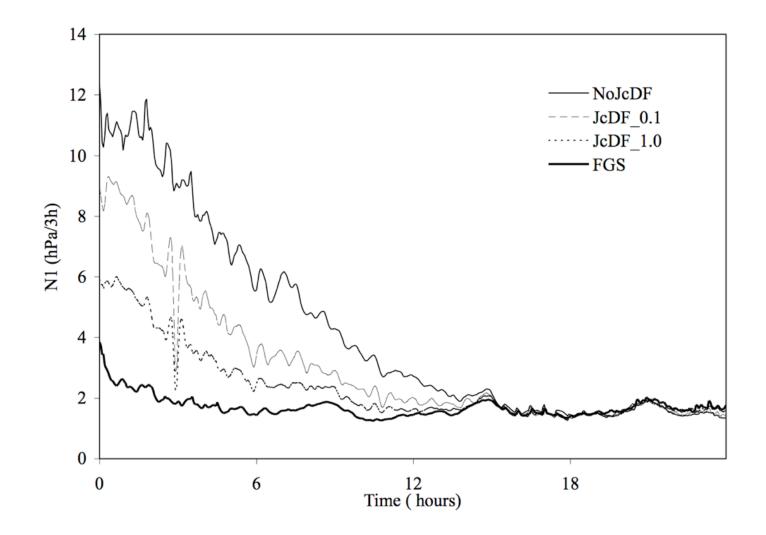
Weak constraint with digital filter

$$J = J_b + J_o + J_c$$


$$J_b(\mathbf{x}_0) = \frac{1}{2} [(\mathbf{x}_0 - \mathbf{x}_b)^T \mathbf{B}^{-1} (\mathbf{x}_0 - \mathbf{x}_b)]$$

$$J_o(\mathbf{x}_0) = \frac{1}{2} \sum_{k=1}^{K} [(\mathbf{H}_k \mathbf{x}_k - \mathbf{y}_k)^T \mathbf{R}^{-1} (\mathbf{H}_k \mathbf{x}_k - \mathbf{y}_k)]$$

$$J_c(\mathbf{x}_0) = \frac{\gamma_{df}}{2} [(\delta \mathbf{x}_{N/2} - \delta \mathbf{x}_{N/2}^{df})^T \mathbf{C}^{-1} (\delta \mathbf{x}_{N/2} - \delta \mathbf{x}_{N/2}^{df})]$$


$$= \frac{\gamma_{df}}{2} [\left[\delta \mathbf{x}_{N/2} - \sum_{i=0}^{N} f_i \delta \mathbf{x}_i \right]^T \mathbf{C}^{-1} \left[\delta \mathbf{x}_{N/2} - \sum_{i=0}^{N} f_i \delta \mathbf{x}_i \right]$$

$$= \frac{\gamma_{df}}{2} \left[\left[\sum_{i=0}^{N} h_i \delta \mathbf{x}_i \right]^T \mathbf{C}^{-1} \left[\sum_{i=0}^{N} h_i \delta \mathbf{x}_i \right]$$
where:
$$h_i = \begin{cases} -f_i, & \text{if } i \neq N/2 \\ 1 - f_i, & \text{if } i = N/2 \end{cases}$$

Weak constraint with digital filter (domain averaged surface pressure variation)

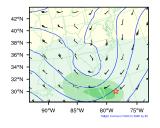
Consider lateral boundary condition as control variable

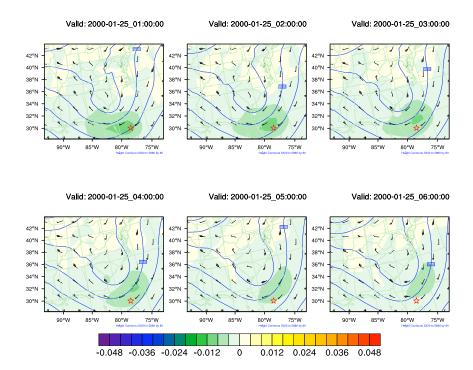
 $J = J_b + J_o + J_c + J_{lbc}$

$$J_{lbc} = \frac{1}{2} (\mathbf{x}(t_k) - \mathbf{x}_b(t_k))^T \mathbf{B}^{-1} (\mathbf{x}(t_k) - \mathbf{x}_b(t_k))$$
$$= \frac{1}{2} \delta \mathbf{x}(t_k)^T \mathbf{B}^{-1} \delta \mathbf{x}(t_k)$$

 J_{lbc} is the J_b at the end of the assimilation window lateral boundary control is obtained through

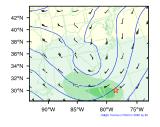
$$\frac{\partial \delta \mathbf{x}_{lbc}}{\partial t} = \frac{\delta \mathbf{x}(t_k) - \delta \mathbf{x}(t_0)}{t_k - t_0}$$

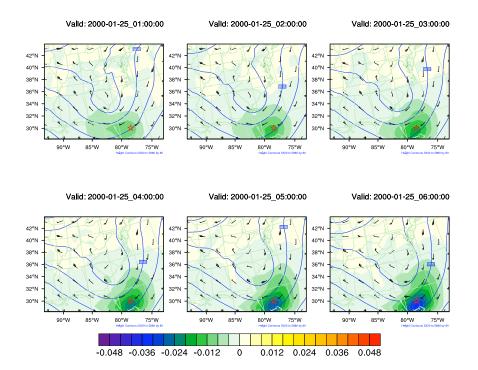



Single observation experiment

To investigate the impact of including boundary condition control in data assimilation, a 6h observation close to boundary is put at the downstream of the boundary inflow, we expect that the major analysis increments response at 0h should be in boundary condition and outside of domain.

Valid: 2000-01-25_00:00:00


Remarks Forecasted 500mb T difference

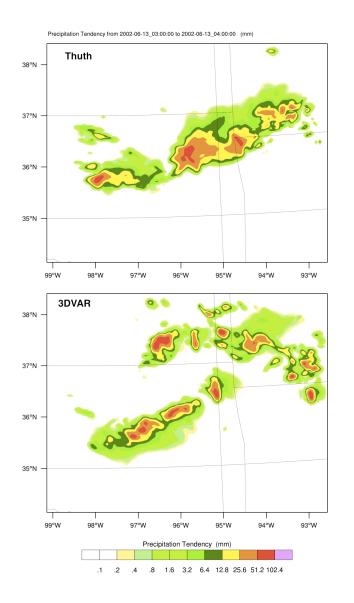

(DA forecast - reference forecast)

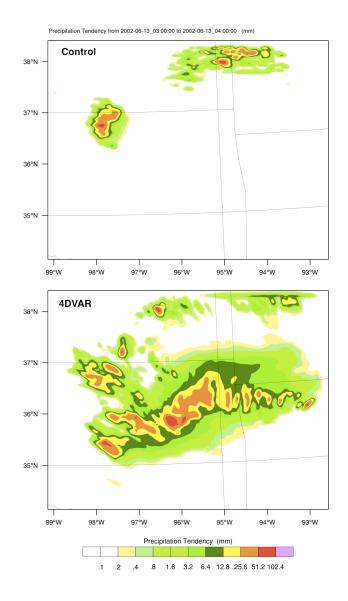
- ★ is the location of obs. at the ending time (6h).
- O B = -0.95K
- LBC control is turned off

Valid: 2000-01-25_00:00:00

Remarks Forecasted 500mb T difference (DA forecast - reference forecast)

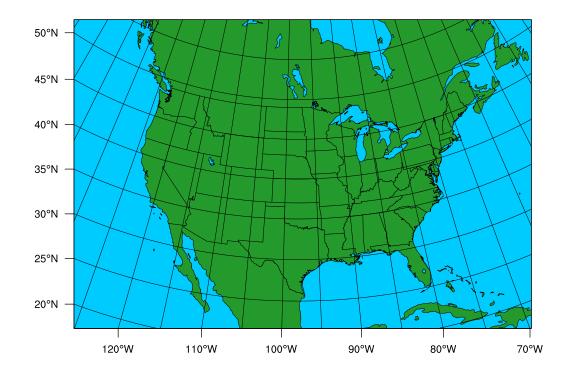
- * is the location of obs.
 at the ending time (6h).
- LBC control is turned on

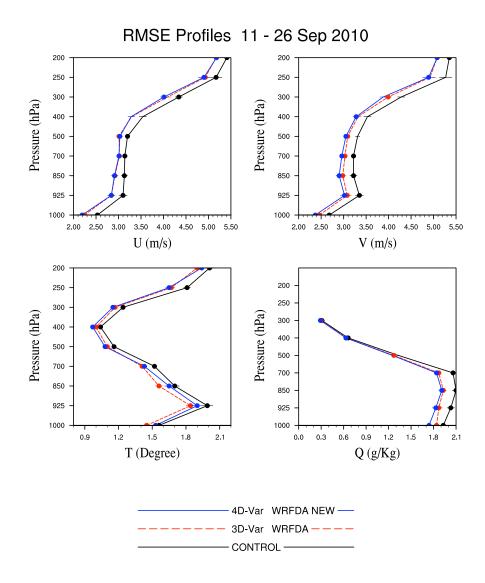



An OSSE radar data assimilation with WRF 4D-Var

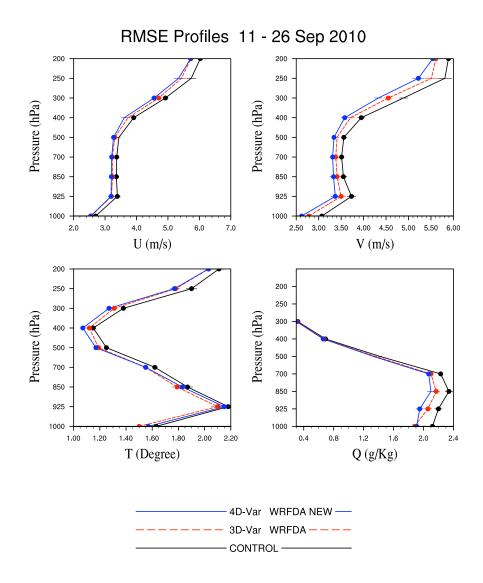
- TRUTH Initial condition from TRUTH (13-h forecast initialized at 2002061212Z from AWIPS 3-h analysis) run cutted by ndown, boundary condition from NCEP GFS data.
- NODA Both initial condition and boundary condition from NCEP GFS data.
- 3DVAR 3DVAR analysis at 2002061301Z used as the initial condition, and boundary condition from NCEP GFS. Only Radar radial velocity at 2002061301Z assimilated (total data points = 97,033), 3 outer loops.
- ► 4DVAR 4DVAR analysis at 2002061301Z used as initial condition, and boundary condition from NCEP GFS. The radar radial velocity at 4 times: 200206130100, 05, 10, and 15, are assimilated (total data points = 384,304), 3 outer loops.

OSSE 3rd hour precipitation simulation

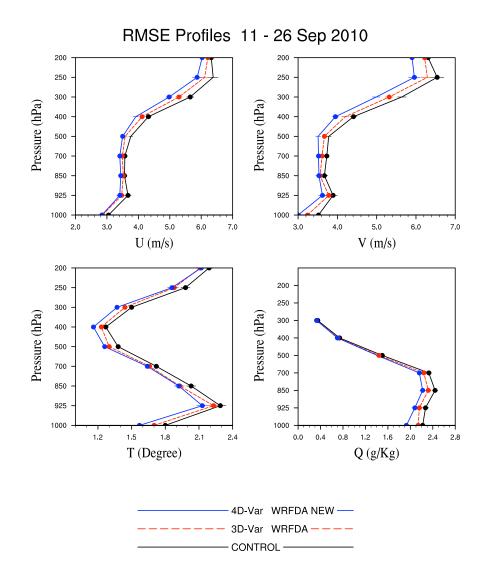



Experiment configuration

- ► Grids: 105x72x28L
- Resolution: 60km
- Period: 2010091100-2010092600 @0Z,6Z,12Z,18Z
- ▶ First guess is the 12h forecast from NCEP FNL
- ▶ 48h forecasts from FG, 3DVAR and 4DVAR
- ▶ Verified against NCEP GDAS prepbufr data



Averaged RMSE of 24H forecast verification $% \mathcal{A}$



Averaged RMSE of 36H forecast verification

Averaged RMSE of 48H forecast verification

Download and setup test dataset for this tutorial

- download the WRFDA and WRFPLUSV3 codes from : http://www.mmm.ucar.edu/wrf/users/wrfda/download/get_source.html
- ▶ enter into WRFDA/var/test/4dvar
- ▶ get the test dataset from :

ftp://ftp.ucar.edu/pub/mmm/xinzhang/WRF4DVar_V3.3_Tutorial/2008020521

►
$$ln - fs wrfinput_d01 fg$$

- \blacktriangleright ln -fs ../../build/da_wrfvar.exe .
- \blacktriangleright ln -fs ../../run/be.dat.cv3 be.dat

Installation

- ► Install WRFPLUS V3.3
 - ▶ ./configure (-d) wrfplus
 - ► ./compile em_real
 - ► wrf.exe should be generated under main directory.
- \blacktriangleright for csh, tcsh : setenv WRFPLUS_DIR path_of_wrfplusv3
- ▶ for bash, ksh : $export WRFPLUS_DIR = path_of_wrfplusv3$
- ► Install WRFDA V3.3
 - ▶ ./configure (-d) 4dvar
 - ▶ ./compile all_wrfvar
 - da_wrfvar.exe should be generated under var/build directory.

Tips for compilation

- ► Speed up the compilation with parallel make —gnu make: setenv J " - j 6"
- setenv BUFR 1 to assimilate prepbufr observation.
- ► setenv CRTM 1 to assimilate radiance bufr data with CRTM.

Portability

We have tested the WRF 4D-Var V3.3 on following systems:

- ► IBM with XLF compiler V12.1
- ▶ Linux with PGI compiler V8.0-4 64-bit
- ► Linux with INTEL compiler V11.1
- ▶ Mac with PGI compiler V10.3-0 64-bit
- ► Mac with GFORTRAN compiler V4.4.0
- Mac with G95 compiler V4.0.3 (please download the patch on WRFDA home page)

Common problems in compilation

- To use gfortran (default 32-bit) on Mac snow leopard system, "-m64" need to be manually appended after "SFC" in configure.wrf
- Enough memory is needed to compile some subroutines in WRFPLUS with default optimization level (-O3).
 Manually reduce the compilation optimization level for some subroutines when system can not allocate enough memory to perform compilation with higher level optimization.
- On some platforms, some compilers might not be able to compile WRF with real_size=8. Usually, upgrading the compiler is the easiest way to solve this problem.

Test for tangent linear model and adjoint model

- After WRFPLUS compilation, It is a good practice to run tangent linear model test and adjoint model test with you own case IC and BC.
- Under WRFPLUSV3/test/em_real directory, a test case are setup to let users test the tangent linear model and adjoint model.
- ► In namelist.input, turn on check_TL or check_AD in &perturbation to run tangent linear check or adjoint check.

Test for tangent linear model

Taylor formula:

$$\lim_{\alpha \to 0} \frac{M(x + \alpha \delta \mathbf{x}) - M(x)}{M'(\alpha \delta \mathbf{x})} = 1$$

check results

====== T	angent I	Linear chec	x ========		
check==== U === V	=== W =	== PH === T	== MU == MC)IST =====	
check T T	Т	Т Т	ТІ		
alpha_m=.1000E+00	coef=	0.9825007	6417818E+00	val_n= 0.3628649E+11	val_l= 0.3693279E+11
alpha_m=.1000E-01	coef=	0.9978104	5126907E+00	val_n= 0.3685192E+09	val_l= 0.3693279E+09
alpha_m=.1000E-02	coef=	0.9994915	3238165E+00	val_n= 0.3691401E+07	val_l= 0.3693279E+07
alpha_m=.1000E-03	coef=	0.1000256	0538015E+01	val_n= 0.3694225E+05	val_l= 0.3693279E+05
alpha_m=.1000E-04	coef=	0.9998168	5944643E+00	val_n= 0.3692603E+03	val_l= 0.3693279E+03
alpha_m=.1000E-05	coef=	0.10000972	2073298E+01	val_n= 0.3693638E+01	val_l= 0.3693279E+01
alpha_m=.1000E-06	coef=	0.99996624	4597337E+00	val_n= 0.3693154E-01	val_l= 0.3693279E-01
alpha_m=.1000E-07	coef=	0.9999999	2233716E+00	val_n= 0.3693279E-03	val_1= 0.3693279E-03
alpha_m=.1000E-08	coef=	0.1000001	7668820E+01	val_n= 0.3693285E-05	val_l= 0.3693279E-05
alpha_m=.1000E-09	coef=	0.1000005	0602279E+01	val_n= 0.3693298E-07	val_l= 0.3693279E-07
alpha_m=.1000E-10	coef=	0.1000045	1984913E+01	val_n= 0.3693446E-09	val_l= 0.3693279E-09

Test for adjoint model

adjoint identity:

$$\forall \mathbf{x}, \forall \mathbf{y} : \langle M'.\mathbf{x}, \mathbf{y} \rangle = \langle \mathbf{x}, \mathbf{M}^*.\mathbf{y} \rangle$$

check results

ad_check: VAL_TL: 0.41466174569087E+11 ad_check: VAL_AD: 0.41466174569088E+11

- ► Although the tangent linear model might be imperfect.
- The adjoint test must be perfect. otherwise, there are bugs in the adjoint model.

WRF 4D-Var observation preparation

- \blacktriangleright Conventional observation LITTLE_R format
 - http://www.mmm.ucar.edu/wrf/users/wrfda/Tutorials/2010_Aug/docs/WRFDA_obsproc.pdf
- \blacktriangleright OR Conventional observation prepbufr format
 - near real-time data : ftp://ftp.ncep.noaa.gov/pub/data/nccf/com/gfs/prod
 - history archives : http://dss.ucar.edu/dataset/ds337.0
- ► Satellite radiance bufr data
 - near real-time data : ftp://ftp.ncep.noaa.gov/pub/data/nccf/com/gfs/prod
 - history archives : http://dss.ucar.edu/dataset/ds735.0
- ► Ascii formated Radar data

http://www.mmm.ucar.edu/wrf/users/wrfda/Tutorials/2010_Aug/docs/WRFDA_radar.pdf

Tips for using prepbufr and bufr data on non-IBM platforms

On non-IBM platforms, the prepbufr and bufr formats observation downloaded from NCEP ftp server or NCAR achives should be converted. This conversion was conducted using the C code ssrc.c located in the *utils* directory of the GSI distribution.

More detail information and GSI codes download, please refer to

http://www.dtcenter.org/com-GSI/users/support/faqs/index.php

► How to compile ssrc.c:

pgcc -o ssrc.exe ssrc.c

How to convert :

 ${\rm ssrc.exe}\,<\,{\rm prepbufr.gdas.2008020600.wo40}\,>\,{\rm ob.bufr}$

 ${\rm ssrc.exe}\,<\,{\rm gdas.1bamua.t00z.20080206.bufr}\,>\,{\rm amusa.bufr}$

Important namelist variables for 4D-Var run

- \blacktriangleright & wrfvar1
 - ▶ var4d: logical, if run 4D-Var
 - ▶ var4d_lbc : logical, if include lateral boundary condition control in 4D-Var
 - ▶ var4d_bin: integer, seconds, length of sub-window to group observations in 4D-Var
- ► & perturbation
 - ► *trajectory_io*: logical, do not change, testing purpose
 - enable_identity : logical, if run TL/AD model with identity model, testing purpose
 - *jcdfi_use*: logical, if turn on the digital filter as a weak constraint.
 - ► $jcdfi_diag$: integer, 0/1, J_c term diagnostics
 - $jcdfi_penalty$: real, weight to jcdf term

Important namelist variables for 4D-Var run, cont'd

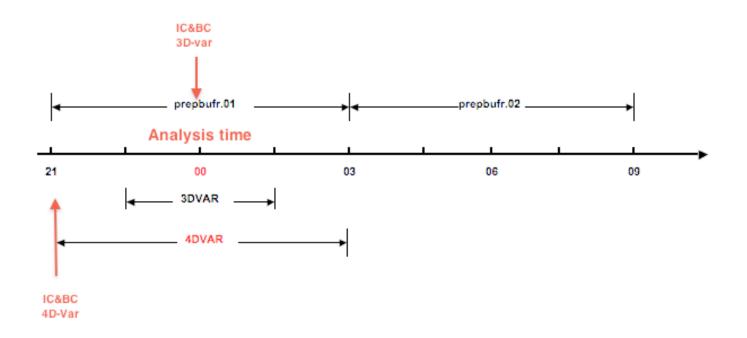
- ► & physics
 - all physics options must be consistent with which used in wrfinput or fg
- $\blacktriangleright \& wrfvar 18, 21, 22$
 - ► *analysis_date* is the start time of the assimilation window
 - time_window_min is the start time of the assimilation window
 - time_window_max is the end time of the assimilation window
- $\blacktriangleright \& time_control$
 - run_xxxxs must be consistent with the length of the assimilation window
 - start_xxxx must be consistent with the start time of the assimilation window
 - end_xxxx must be consistent with the end time of the assimilation window

Adjoint check before 4D-Var run

It is always a good practice to run adjoint check before the product run. How:

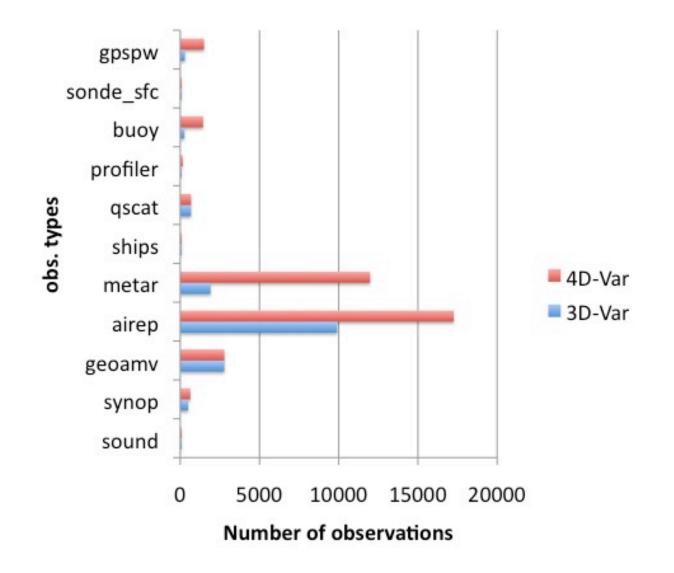
- &wrfvar10
 test_transforms=true,
- ▶ run

da_wrfvar.exe

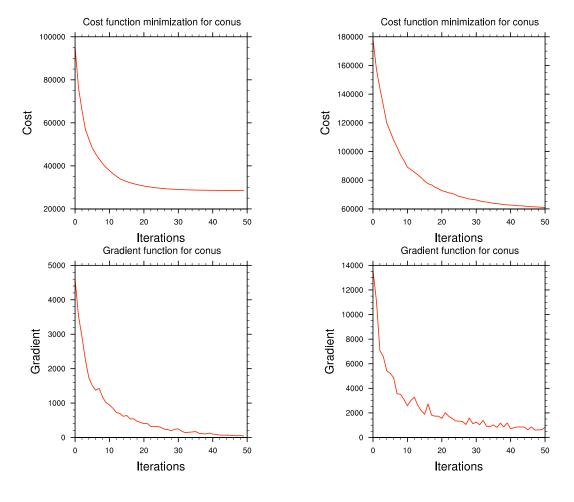

Check results

```
wrf: back from adjoint integrate
d01 2008-02-05_21:00:00 read nonlinear xtraj time stamp:2008-02-05_21:00:00
Single Domain < y, y > = 2.15435506772433E+06
Single Domain < x, x_adj > = 2.15435506772431E+06
Whole Domain < y, y > = 2.15435506772433E+06
Whole Domain < x, x_adj > = 2.15435506772431E+06
da_check_xtoy_adjoint: Test Finished:
```

```
*** WRF-Var check completed successfully ***
```

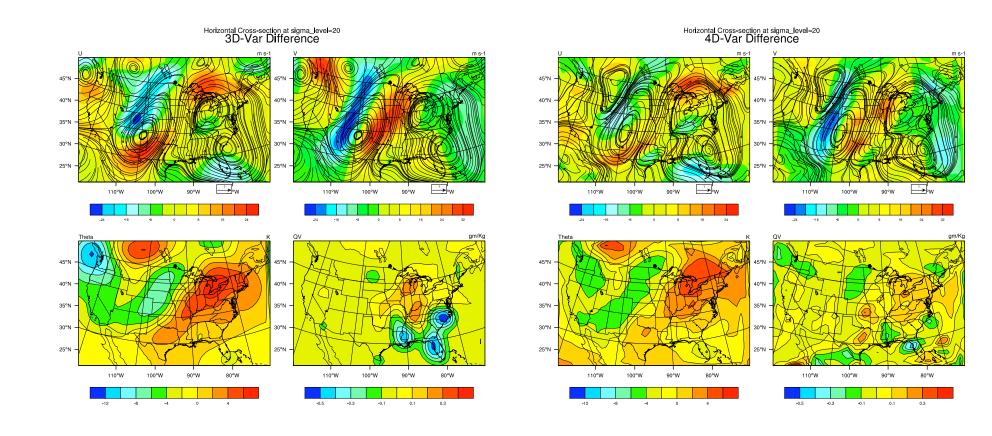


Symmetric 4D-Var window

- ► IC & BC for 3D-Var is valid for 00Z
- ► IC & BC for 4D-Var is valid for 21Z



Comparison of obs. usage on 2008020600

Minimization comparison



Sample analysis increments valid on 2008020600

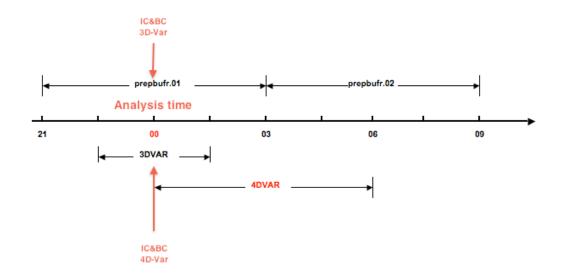
Assimilate satellite radiance data

refer to WRFDA Users' guide Chapter 6:

http://www.mmm.ucar.edu/wrf/users/wrfda/Docs/user_guide_V3.3/users_guide_chap6.htm#_Radiance_ Data_Assimilations

Modify namelist.input for radiance data :

&wrfvar4 use_amsuaobs=true, use_amsubobs=true, &wrfvar14 rtminit_nsensor=6, rtminit_platform=1,1,1,1,1,1, rtminit_satid=15,16,18,15,16,17, rtminit_sensor=3,3,3,4,4,4, thinning_mesh=120.0,120.0,120.0,120.0,120.0,120.0, thinning=true, qc_rad=true, rtm_option=2, use_varbc=true, use_crtm_kmatrix=true,



Additional links for radiance assimilation

- \blacktriangleright link/copy amsua data as amsua.bufr
- \blacktriangleright link/copy amsub data as amsub.bufr
- $\blacktriangleright ~ link fs~WRFDA/var/run/radiance_info~radiance_info$
- $\blacktriangleright link fs \ WRFDA/var/run/crtm_coeffs \ crtm_coeffs$

One-side 4D-Var window

- \blacktriangleright link/copy prepbufr data at 00Z as ob01.bufr
- \blacktriangleright link/copy prepbufr data at 06Z as ob02.bufr
- \blacktriangleright link/copy amsua data at 00Z as amsua01.bufr
- \blacktriangleright link/copy amsua data at 06Z as amsua02.bufr
- ▶ ...

Common problems in WRF 4D-Var run

Error message

 Solution: prepbufr and/or bufr data should be converted for non-IBM platforms.

Error message, PGI compiler only

0: ALLOCATE: 18446744072053605056 bytes requested; not enough memory

 Solution: Please go to WRFDA home page to download the fixes.

Developments after V3.3 $\,$

Finished:

- 3 physics schemes were added in WRF tangent linear model and adjoint model.
 - ► surface drag (bl_pbl_physics=98)
 - ► large scale condensate (mp_physics=98)
 - ► a simplified cumulus scheme (cu_physics=98)
- ► Parallelization of WRF tangent linear model is done.

Under development:

- ► Parallelization of WRF adjoint model.
- ► Add precipitation observation to forcing term.
- ▶ Different resolutions in outer loops and inner loops.

Thank You

The NESL Mission is: To advance understanding of weather, climate, atmospheric composition and processes; To provide facility support to the wider community; and, To apply the results to benefit society.

NCAR is sponsored by the National Science Foundation

