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Outline 
•  Motivation and differently proposed hybrid 

DA 

•  Elements of hybrid DA 

•  Preliminary results 

•  Introduction to practice 
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Why Hybrid? 

•  3D-Var uses static (“climate”) BE 

•  4D-Var implicitly uses flow-dependent 
information, but still starts from static BE 

•  Hybrid: using flow-dependent background error 
information from ensemble in a variational DA 
system 

� 

J(x) =
1
2
(x − xb )

T B−1(x − xb ) +
1
2
[y − H(x)]T R−1[y − H(x)]
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T Analysis increments from a single T obs 
1K difference, 1K error 

3DVAR
 Hybrid (64 members)
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What is the Hybrid DA? 
•  Combine ensemble and variational DA together 

•  Ensemble mean is analyzed by a variational algorithm (i.e., 
minimize a cost function). It combines the 3DVAR 
“climate” background error covariance and “error of the 
day” from ensemble. 

•  A system for updating ensemble 
–  Could be (independent) ensemble forecasts already available from 

NWP centers 
–  Could be an EnKF-based DA system 
–  Could be an ETKF-based ensemble system 
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Hamill and Snyder, 2000 
•  3DVAR cost function 

•  Idea: replace B by a weighted sum of 3DVAR B and the ensemble 
covariance � 

J(x) = 1
2
(x − xb )

TB−1(x − xb ) + 1
2
[H(x) − y]TR−1[H(x) − y]

� 

B =α1B1 +α2B2, α1 =1-α2
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Lorenc, 2003 

  

� 

J(x,α) = β1Jb + β2Je + Jo

= β1
1
2

(x − xb )T B−1(x − xb ) + β2
1
2
αT A−1α

extended control variables6 7 4 8 4 

+ 1
2

[y −H(x + xe )]
T R−1[y −H(x + xe )]

•  Ensemble covariance is included in the 3DVAR cost function through 
augmentation of control variables (Lorenc, 2003) 

•  This is implemented in WRFDA (Wang et al., 2008) 

•  It is mathematically equivalent to Hamill and Snyder 
(2000). 
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Advantages of the Hybrid DA? 
•  Hybrid DA system can be more robust than a pure 

EnKF-based DA 

–  For some observations type, e.g., radiances, localization 
is not well defined in observation space, bias correction 
issues 

–  Localization is in model space in a variational 
framework. 

–  For small-size ensemble since can adjust amount of 
3DVAR and ensemble covariances. 
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Elements of Hybrid DA 

•  Ensemble forecasts: WRF-ensemble forecasts 

•  Ensemble Transform Kalman Filter (ETKF): 
•  Update forecast/background ensemble perturbations to analysis 

ensemble perturbations 

•  A Variational DA to update ensemble mean. 
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Cycling WRF/WRFDA/ETKF System (Hybrid DA) 
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Hybrid DA: Variational Part 
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Hybrid 3DVAR formulation 
•  Ensemble covariance is included in the 3DVAR cost function through 

augmentation of control variables (Lorenc, 2003; Wang et al., 2008) 

  

� 

J(x,α) = β1Jb + β2Je + Jo

= β1
1
2

(x − xb )T B−1(x − xb ) + β2
1
2
αT A−1α

extended control variables6 7 4 8 4 

+ 1
2

[y −H(x + xe )]
T R−1[y −H(x + xe )]

1
β1

+ 1
β2

= 1,  xe = 1
N -1

α i • xi
'

i=1

N

∑ ,   where xi
'  is the ensemble perturbation for the member i.

extended control variable α = (α1,α2,...,αN ) has dimension of 
M(dimension of x) ×N (ensemble size)
the matrix A plays the role for ensemble covariance localization.

A =
S

O

S

⎛ 

⎝ 

⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ ⎟ 
,  S =< (α i)(α i)

T >
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Hybrid 3DVAR formulation 

•  Equivalently can write in another form (Wang et al., 
2008) 

•  This explains why S is for localization. 

•  This is also equivalent to Hamill and Snyder (2000). 

  

� 

J(x,α) = 1
2

(x + xe − xb )T ( 1
β1

B + 1
β2

Pe o S)−1(x + xe − xb )

           + 1
2

[y −H(x + xe )]
T R−1[y −H(x + xe )]

Pe = 1
N −1

(x ')(x')T  is the sample ensemble covariances.
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Hybrid DA: Ensemble Part (ETKF-based) 
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ETKF formulation 
•  The ETKF (Wang et al. 2007) finds the transformation matrix T to 

update forecast/background perturbations to analysis perturbations 

•  Where E and λ contain eigenvectors and eigenvalues of a NxN (N is 
ensemble size) matrix 

δxa = δx fT

[H(δxf )]TR-1[H(δxf )] / (N −1)

   H(δx k
f ) = H (x k

f ) − H (x k
f )

� 

T= rE(ρλ + I)-1/2ET
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Inflation 
•  r inflation factor, ρ  accounts for the fraction of the forecast-

error variance projected onto the ensemble subspace. 
–  Both factors are adaptively calculated for each DA cycle by using 

innovation statistics. 

•  Inflation is to ensure that on average the background error 
variance estimated from the spread of ensembles is consistent 
with innovation statistics, i.e., 

� 

dTR−1d ≈ trace 1
N −1

[H(xi) −H(x)]
i=1

N

∑ R−1[H(xi) −H(x)]+ I
⎛ 

⎝ 
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Pros and Cons of ETKF  
•  Desirable aspects: 

–  ETKF is fast (computations are done in model ensemble 
perturbation subspace). 

–  It directly updates perturbations. 

•  Less desirable aspects: 
–  Not localized, therefore it does not represent sampling error 

efficiently. It may need very high inflation factors. 

•  Alternatives for ensemble part 
–  EnKF, Perturbed obs, LETKF 
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NE=10
 NE=20


NE=40 NE=64
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JE_factor=1.1
 JE_factor=1.25


JE_factor=2.0
 JE_factor=10.0
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Old results (need to update in the future) 

•  Ensemble size: 10 
•  Test Period: 15th August - 15th September 2007 
•  Cycle frequency: 3 hours 
•  Observations: GTS conventional observations 
•  Deterministic ICs/BCs: Down-scaled GFS forecasts 
•  Ensemble ICs/BCs: Produced by adding spatially correlated 

Gaussian noise to GFS forecasts.  
•  Horizontal resolution: 45km 
•  Number of vertical levels: 57 
•  Model top: 50 hPa 
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Ensemble spread: 500 hPa height (m) std. dev. 

WRF  t+3 valid at 2007081900


Modest inflations factors used
 Higher inflations factors used
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Ensemble Mean and Std. Deviation (spread) 
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Inflation Factors 
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Prior Ensemble Mean


Ensemble Spread


   Failed ETKF

(Hurricane Dean)

   Restarted for 

     those cases
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Hybrid gives better RMSE scores for wind compared to 3D-VAR. 
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Hybrid gives better RMSE scores for wind compared to 3D-VAR. 
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Introduction of Hybrid practice session 

  Computation: 
•  Computing ensemble mean. 
•  Extracting ensemble perturbations (EP). 
•  Running WRFDA in “hybrid” mode. 
•  Displaying results for: ens_mean, std_dev, ensemble 

perturbations, hybrid increments, cost function and, etc. 
•  If time permits, tailor your own test by changing hybrid 

settings; testing different values of “je_factor” and 
“alpha_corr_scale” parameters. 

  Scripts to use: 
•  Some NCL scripts to display results. 

•  Ensemble generation part not included in current practice 
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Brief information for the chosen case 
Ensemble size: 10 
Domain info: 

•  time_step=240, 
•  e_we=122, 
•  e_sn=110, 
•  e_vert=42, 
•  dx=45000, 
•  dy=45000, 

Input data provided (courtesy of JME Group): 
•  WRF ensemble forecasts valid at 2006102800 
•  Observation data (ob.ascii) for 2006102800 
•  3D-VAR “be.dat” file 
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