

Hybrid Variational/Ensemble Data Assimilation

Zhiquan Liu (liuz@ucar.edu) NCAR/MMM

Acknowledgements: D. M. Barker, M. Demirtas, A. P. Mizzi

2011 Summer WRFDA tutorial

1

Outline

- Motivation and differently proposed hybrid DA
- Elements of hybrid DA
- Preliminary results
- Introduction to practice

Why Hybrid?

• 3D-Var uses static ("climate") BE

$$J(x) = \frac{1}{2} (x - x_b)^T B^{-1} (x - x_b) + \frac{1}{2} [y - H(x)]^T R^{-1} [y - H(x)]$$

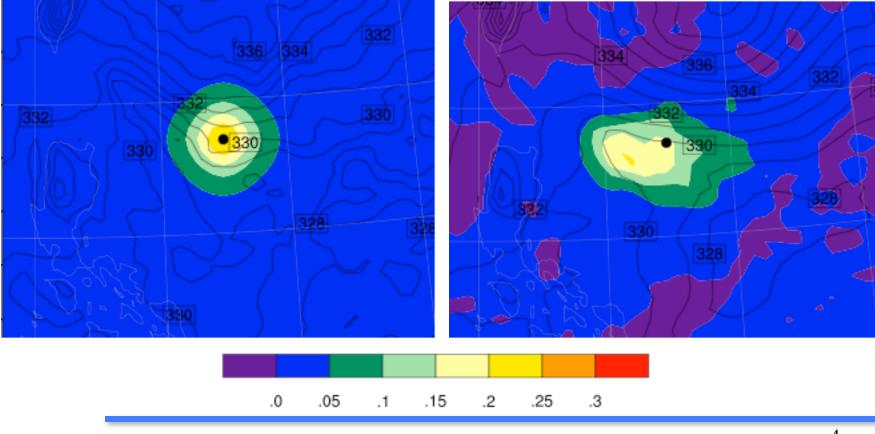
- 4D-Var implicitly uses flow-dependent information, but still starts from static BE
 J_j(δx_j) = ¹/₂ (δx_j − δx^b_j)^TB⁻¹(δx_j − δx^b_j) + ¹/₂ ∑^K_{k=0} (H_{j,k}M_{j,k}δx_j − d_{j,k})^TR⁻¹(H_{j,k}M_{j,k}δx_j − d_{j,k})
- Hybrid: using flow-dependent background error information from ensemble in a variational DA system

T Analysis increments from a single T obs

1K difference, 1K error

3DVAR

Hybrid (64 members)



What is the Hybrid DA?

- Combine ensemble and variational DA together
- Ensemble mean is analyzed by a variational algorithm (i.e., minimize a cost function). It combines the 3DVAR "climate" background error covariance and "error of the day" from ensemble.
- A system for updating ensemble
 - Could be (independent) ensemble forecasts already available from NWP centers
 - Could be an EnKF-based DA system
 - Could be an ETKF-based ensemble system

Hamill and Snyder, 2000

• 3DVAR cost function

$$J(x) = \frac{1}{2} (x - x_b)^{\mathrm{T}} \mathrm{B}^{-1} (x - x_b) + \frac{1}{2} [H(x) - y]^{\mathrm{T}} \mathrm{R}^{-1} [H(x) - y]$$

• Idea: replace B by a weighted sum of 3DVAR B and the ensemble covariance

$$\mathbf{B} = \alpha_1 \mathbf{B}_1 + \alpha_2 \mathbf{B}_2, \ \alpha_1 = 1 - \alpha_2$$

Lorenc, 2003

• Ensemble covariance is included in the 3DVAR cost function through augmentation of control variables (Lorenc, 2003)

$$J(x,\alpha) = \beta_1 J_b + \beta_2 J_e + J_o$$

= $\beta_1 \frac{1}{2} (x - x_b)^T B^{-1} (x - x_b) + \beta_2 \frac{1}{2} \alpha^T A^{-1} \alpha + \frac{1}{2} [y - H(x + x_e)]^T R^{-1} [y - H(x + x_e)]$

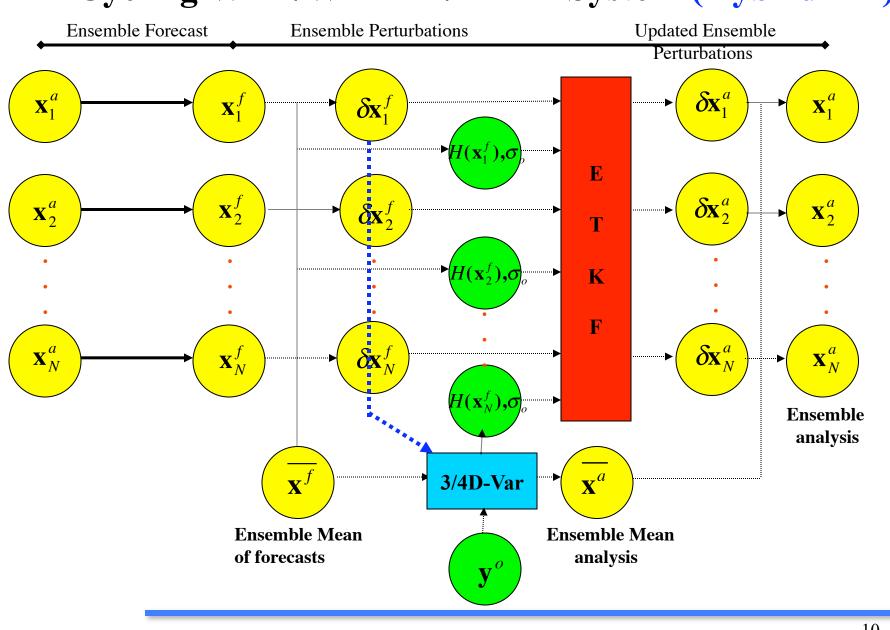
- This is implemented in WRFDA (Wang et al., 2008)
- It is mathematically equivalent to Hamill and Snyder (2000).

Advantages of the Hybrid DA?

- Hybrid DA system can be more robust than a pure EnKF-based DA
 - For some observations type, e.g., radiances, localization is not well defined in observation space, bias correction issues
 - Localization is in model space in a variational framework.
 - For small-size ensemble since can adjust amount of 3DVAR and ensemble covariances.

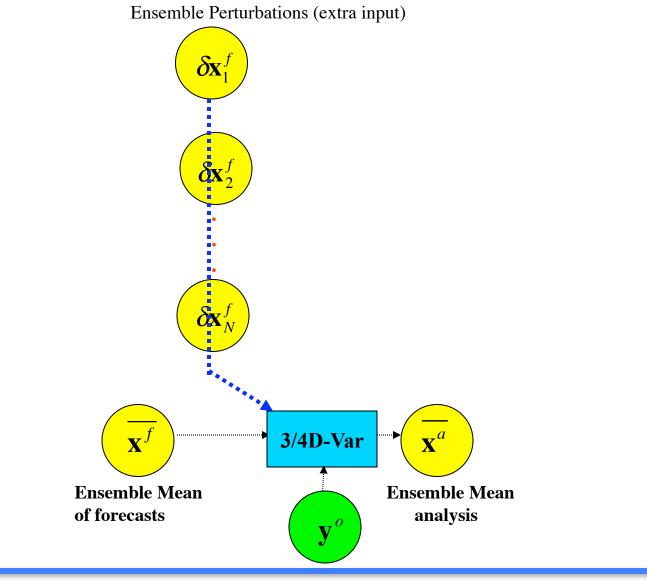
Elements of Hybrid DA

- Ensemble forecasts: *WRF-ensemble forecasts*
- Ensemble Transform Kalman Filter (ETKF):
 - Update forecast/background ensemble perturbations to analysis ensemble perturbations
- A Variational DA to update ensemble mean.



Cycling WRF/WRFDA/ETKF System (Hybrid DA)

Hybrid DA: Variational Part



Hybrid 3DVAR formulation

• Ensemble covariance is included in the 3DVAR cost function through augmentation of control variables (Lorenc, 2003; Wang et al., 2008)

$$J(x,\alpha) = \beta_1 J_b + \beta_2 J_e + J_o$$

$$= \beta_1 \frac{1}{2} (x - x_b)^T B^{-1} (x - x_b) + \overbrace{\beta_2 \frac{1}{2} \alpha^T A^{-1} \alpha}^{extended control variables} + \frac{1}{2} [y - H(x + x_e)]^T R^{-1} [y - H(x + x_e)]$$

$$\frac{1}{\beta_1} + \frac{1}{\beta_2} = 1, \ x_e = \frac{1}{\sqrt{N-1}} \sum_{i=1}^{N} \alpha_i \bullet x_i^i, \text{ where } x_i^i \text{ is the ensemble perturbation for the member i.}$$

$$extended \text{ control variable } \alpha = (\alpha_1, \alpha_2, ..., \alpha_N) \text{ has dimension of}$$

$$M(\text{dimension of } x) \times N \text{ (ensemble size)}$$
the matrix A plays the role for ensemble covariance localization.}

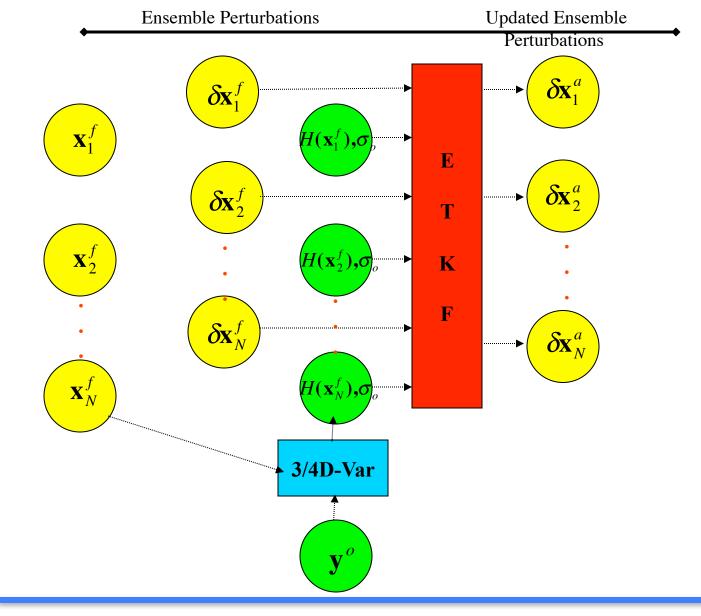
$$\mathbf{A} = \begin{pmatrix} S & & \\ & \ddots & \\ & & S \end{pmatrix}, \mathbf{S} = <(\alpha_i)(\alpha_i)^{\mathrm{T}} >$$

Hybrid 3DVAR formulation

• Equivalently can write in another form (Wang et al., 2008)

$$J(x,\alpha) = \frac{1}{2}(x + x_e - x_b)^T (\frac{1}{\beta_1}B + \frac{1}{\beta_2}P^e \circ S)^{-1}(x + x_e - x_b) + \frac{1}{2}[y - H(x + x_e)]^T R^{-1}[y - H(x + x_e)]$$
$$P^e = \frac{1}{N-1}(x')(x')^T \text{ is the sample ensemble covariances.}$$

- This explains why S is for localization.
- This is also equivalent to Hamill and Snyder (2000).



Hybrid DA: Ensemble Part (ETKF-based)

ETKF formulation

• The ETKF (Wang et al. 2007) finds the transformation matrix **T** to update forecast/background perturbations to analysis perturbations

$$\delta \mathbf{x}^{a} = \delta \mathbf{x}^{f} \mathbf{T}$$
$$\mathbf{T} = r \mathbf{E} (\rho \lambda + \mathbf{I})^{-1/2} \mathbf{E}^{\mathrm{T}}$$

• Where E and λ contain eigenvectors and eigenvalues of a NxN (N is ensemble size) matrix

 $[\mathbf{H}(\delta \mathbf{x}^{f})]^{\mathrm{T}} \mathbf{R}^{-1} [\mathbf{H}(\delta \mathbf{x}^{f})] / (N-1)$ $\mathbf{H}(\delta \mathbf{x}^{f}_{k}) = H(\mathbf{x}^{f}_{k}) - \overline{H(\mathbf{x}^{f}_{k})}$

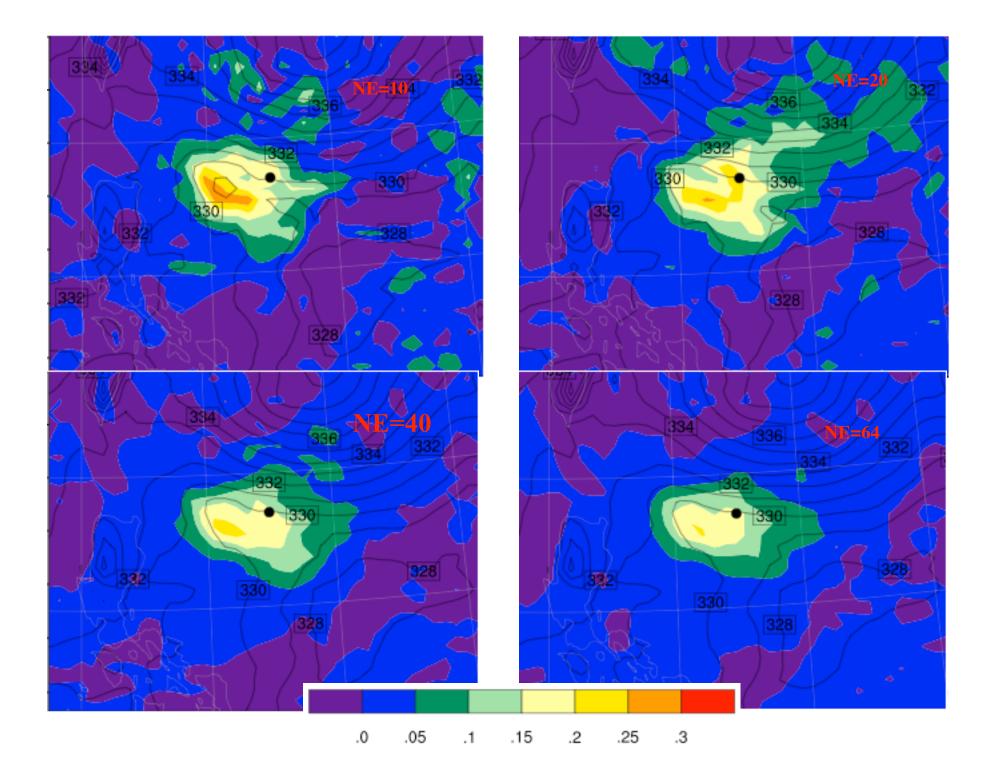
Inflation

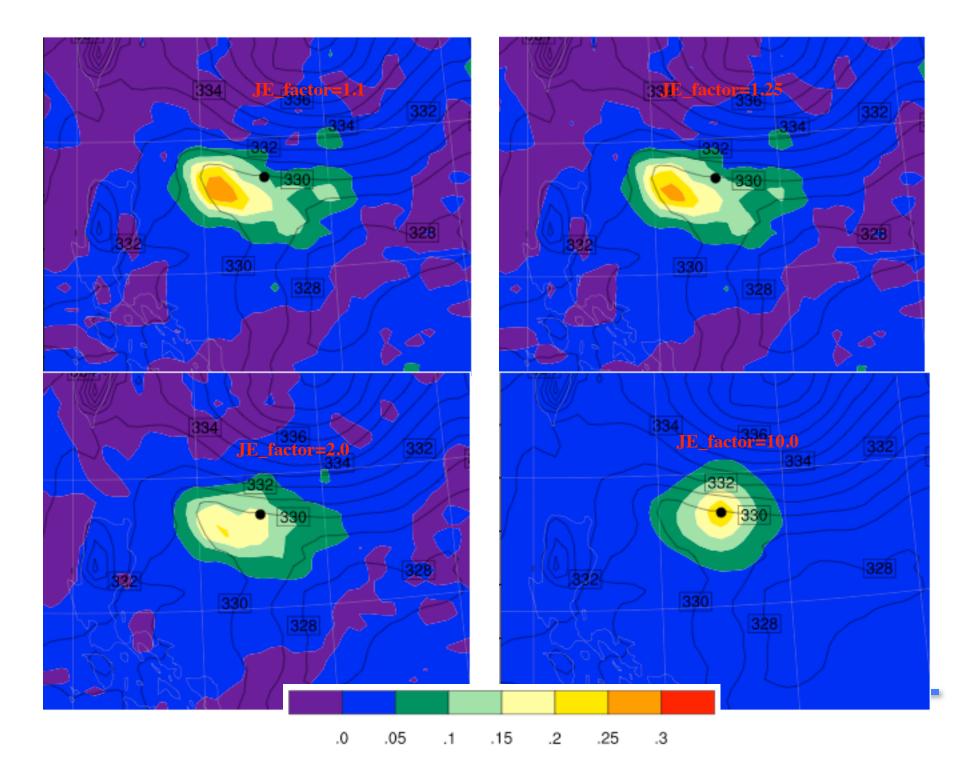
- r inflation factor, ρ accounts for the fraction of the forecasterror variance projected onto the ensemble subspace.
 - Both factors are adaptively calculated for each DA cycle by using innovation statistics.
- Inflation is to ensure that on average the background error variance estimated from the spread of ensembles is consistent with innovation statistics, i.e.,

$$d^{\mathrm{T}}\mathbf{R}^{-1}d \approx trace\left(\frac{1}{N-1}\sum_{i=1}^{N} [H(x_i) - H(\overline{x})]\mathbf{R}^{-1}[H(x_i) - H(\overline{x})] + \mathbf{I}\right)$$

Pros and Cons of ETKF

- Desirable aspects:
 - ETKF is fast (computations are done in model ensemble perturbation subspace).
 - It directly updates perturbations.
- Less desirable aspects:
 - Not localized, therefore it does not represent sampling error efficiently. It may need very high inflation factors.
- Alternatives for ensemble part
 - EnKF, Perturbed obs, LETKF



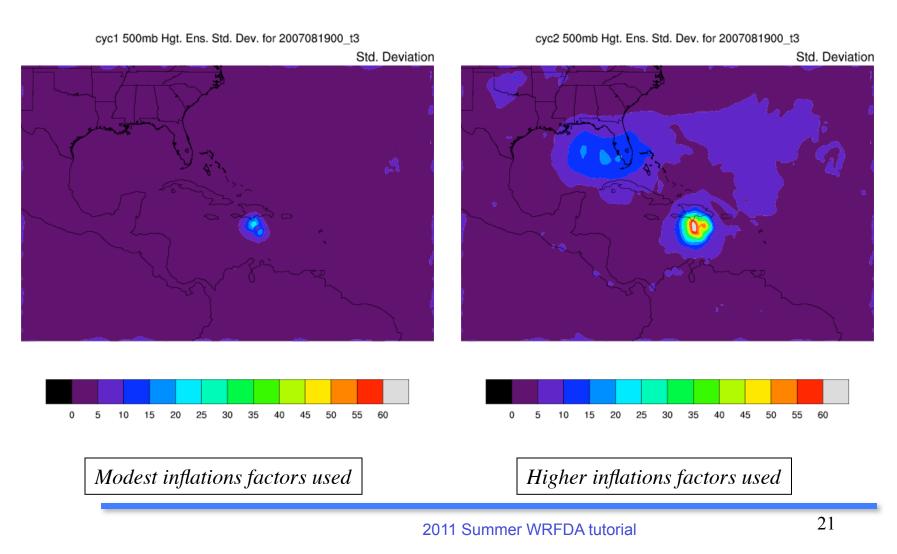


Old results (need to update in the future)

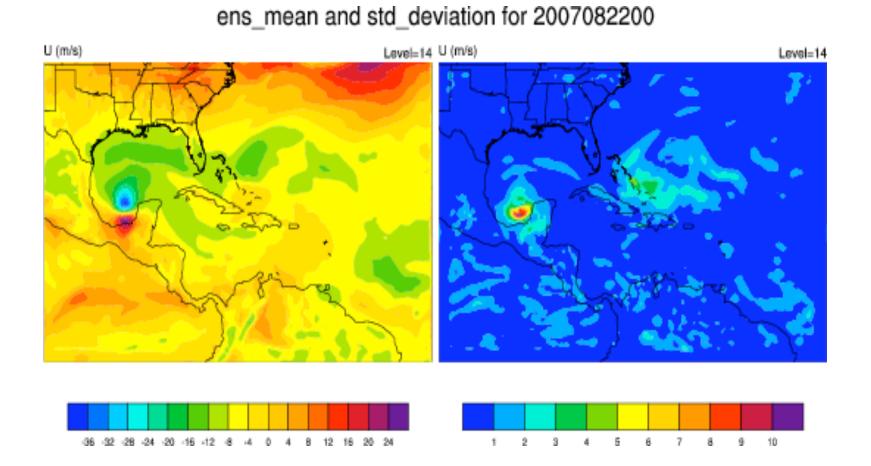
- Ensemble size: 10
- Test Period: 15th August 15th September 2007
- Cycle frequency: 3 hours
- Observations: GTS conventional observations
- Deterministic ICs/BCs: Down-scaled GFS forecasts
- Ensemble ICs/BCs: Produced by adding spatially correlated Gaussian noise to GFS forecasts.
- Horizontal resolution: 45km
- Number of vertical levels: 57
- Model top: 50 hPa

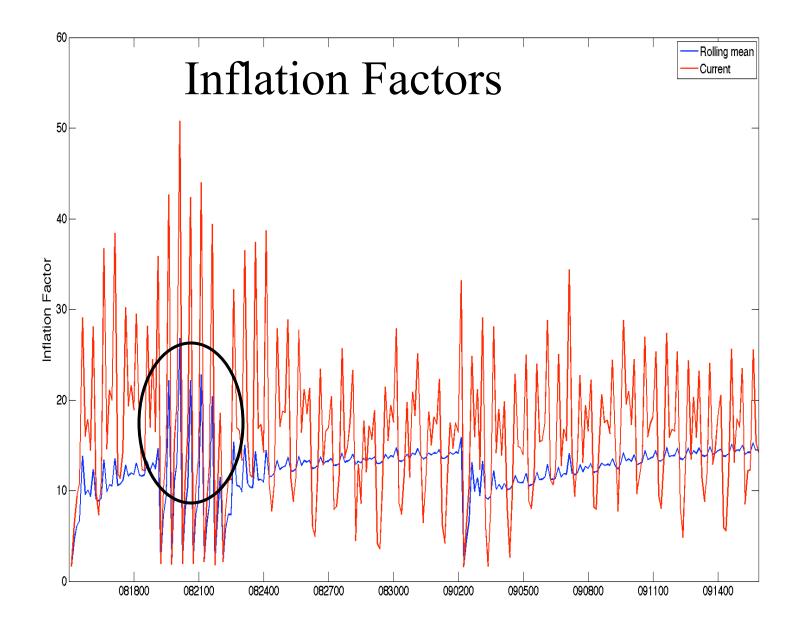
Ensemble spread: 500 hPa height (m) std. dev.

WRF t+3 valid at 2007081900

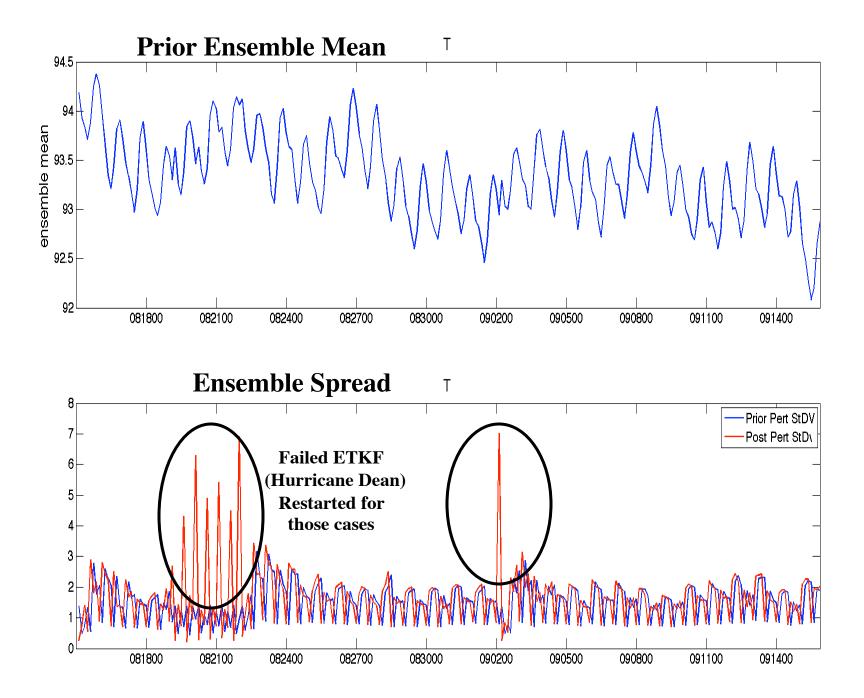


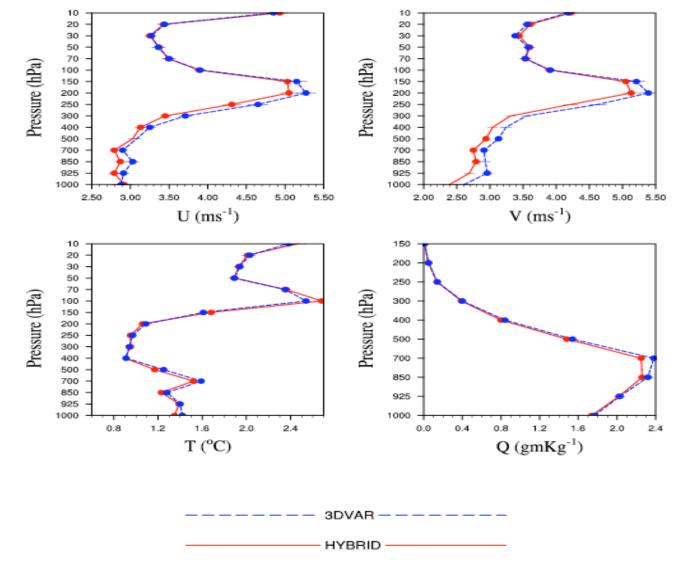
Ensemble Mean and Std. Deviation (spread)





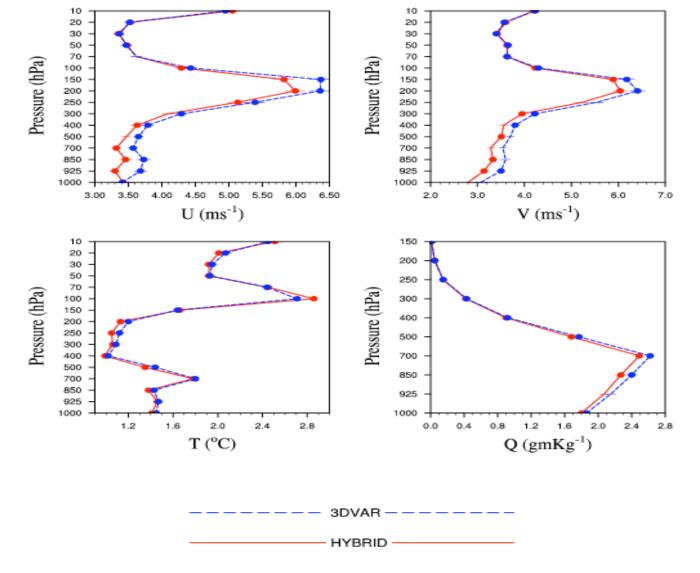
23





RMSE Profiles for t8_45km: 2007081612-2007091512 (t+24h)

Hybrid gives better RMSE scores for wind compared to 3D-VAR.



RMSE Profiles for t8_45km: 2007081712-2007091512 (t+48h)

Hybrid gives better RMSE scores for wind compared to 3D-VAR.

Introduction of Hybrid practice session

• Computation:

- Computing ensemble mean.
- Extracting ensemble perturbations (EP).
- Running WRFDA in "hybrid" mode.
- Displaying results for: ens_mean, std_dev, ensemble perturbations, hybrid increments, cost function and, etc.
- If time permits, tailor your own test by changing hybrid settings; testing different values of "je_factor" and "alpha_corr_scale" parameters.
- Scripts to use:
 - Some NCL scripts to display results.
- Ensemble generation part not included in current practice

Brief information for the chosen case

Ensemble size: 10

Domain info:

- time_step=240,
- e_we=122,
- e_sn=110,
- e_vert=42,
- dx=45000,
- dy=45000,

Input data provided (courtesy of JME Group):

- WRF ensemble forecasts valid at 2006102800
- Observation data (ob.ascii) for 2006102800
- 3D-VAR "be.dat" file

References

Demirtas, M., D. Barker, Y. Chen, J. Hacker, X-Y. Huang, C. Snyder, and X. Wang, 2009: A Hybrid Data Assimilation System (Ensemble Transform Kalman Filter and WRF-VAR) Based Retrospective Tests With Real Observations. Preprints, the AMS 23rd WAF/19th NWP Conference, Omaha, Nebraska.

T. M. Hamill and C. Snyder, 2000: A hybrid ensemble Kalman filter-3D variational analysis scheme. Mon. Wea. Rev., 128, 2905–2919.

Lorenc, A. C., 2003: The potential of the ensemble Kalman filter for NWP—A comparison with 4D-VAR. Quart. J. Roy. Me- teor. Soc., 129, 3183–3203.

Wang, X., and C. H. Bishop, 2003: A comparison of breeding and ensemble transform Kalman filter ensemble forecast schemes. *J. Atmos. Sci.*, **60**, 1140-1158.

Wang, X., D. Barker, C. Snyder, T. M. Hamill, 2008: A hybrid ETKF-3DVAR data assimilation scheme for the WRF model. Part I: observing system simulation experiment. *Mon. Wea. Rev.*, 136, 5116-5131.