

Hybrid Variational/Ensemble Data Assimilation

Zhiquan Liu (liuz@ucar.edu) NCAR/NESL/MMM

WRFDA Tutorial, July 2012

Outline

- Hybrid formulation in variational framework
- Overview of ensemble generation methods
- Introduction to hybrid practice

Motivation of Hybrid DA

• 3D-Var uses static ("climate") BE

$$J(\delta x) = \frac{1}{2} \delta x^{\mathrm{T}} \mathrm{B}^{-1} \delta x + \frac{1}{2} [\mathrm{H} \delta x - d]^{\mathrm{T}} \mathrm{R}^{-1} [\mathrm{H} \delta x - d]$$

• 4D-Var implicitly uses flow-dependent information, but still starts from static BE

$$J(\delta x) = \frac{1}{2} \delta x^{\mathrm{T}} \mathrm{B}^{-1} \delta x + \frac{1}{2} \sum_{i=1}^{I} [\mathrm{HM}_{i} \delta x - d_{i}]^{\mathrm{T}} \mathrm{R}^{-1} [\mathrm{HM}_{i} \delta x - d_{i}]$$

• Hybrid uses flow-dependent background error covariance from forecast ensemble perturbation in a variational DA system

T Analysis increments from a single obs at 750mb near Typhoon center

3DVAR

.0 .03 .06 .09 .12 .15 .18 .21 .24 .27 .3 .33 .36 .39 .42 .45

HYBRID (32 ensemble members)

WRFDA Tutorial, July 2012

What is the Hybrid DA?

- Ensemble mean is analyzed by a variational algorithm (i.e., minimize a cost function).
 - It combines (so "hybrid") the 3DVAR "climate" background error covariance and "error of the day" from ensemble perturbation.
- Hybrid algorithm (again in a variational framework) itself usually does not generate ensemble analyses.
- Need a separate system to update ensemble
 - Could be ensemble forecasts already available from NWP centers
 - Could be an Ensemble Kalman Filter-based DA system
 - Or multiple model/physics ensemble
- Ensemble needs to be good to well represent "error of the day"

Vector/Matrix expression of Ensemble

- Consider an ensemble of the model state vector of dimension M
 X = (x₁, x₂,..., x_N), N is the ensemble size then X is a M×N matrix. M ~ O(10^{6~7}), N ~ O(100).
- Ensemble mean is simply a column vector of Mx1

$$\overline{\mathbf{x}} = \frac{1}{N-1} \sum_{i=1}^{N} \mathbf{x}_{i}$$

• (Normalized) Ensemble perturbation matrix also a MxN matrix

$$\mathbf{X}' = \frac{1}{\sqrt{N-1}} (\mathbf{x}_1 - \overline{\mathbf{x}}, ..., \mathbf{x}_N - \overline{\mathbf{x}}) = (\mathbf{x}'_1, ..., \mathbf{x}'_N)$$

• Sample covariance matrix (MxM) formed by

$$\mathbf{B}_{e} = \mathbf{X}'(\mathbf{X}')^{\mathrm{T}}$$

- it is a low-rank matrix (i.e., only have at most N non-zero eigenvalues)

Hybrid formulation (1) (Hamill and Snyder, 2000)

• 3DVAR cost function

$$J(\mathbf{x}) = \frac{1}{2} (\mathbf{x} - \mathbf{x}_b)^{\mathrm{T}} \mathbf{B}^{-1} (\mathbf{x} - \mathbf{x}_b) + \frac{1}{2} [H(\mathbf{x}) - \mathbf{y}]^{\mathrm{T}} \mathbf{R}^{-1} [H(\mathbf{x}) - \mathbf{y}]$$

• Idea: replace **B** by a weighted sum of static **B**_s and the ensemble **B**_e

$$\mathbf{B} = a_s \mathbf{B}_s + a_e \mathbf{B}_e, \ a_s = 1 - a_e$$

- Has been demonstrated on a simple model.
- Difficult to implement for large NWP model.

Hybrid formulation (2): used in WRFDA (Lorenc, 2003)

• Ensemble covariance is included in the 3DVAR cost function through augmentation of control variables ensemble control variable α_i ($M \times 1$)

$$J(\mathbf{x}, \boldsymbol{\alpha}) = \boldsymbol{\beta}_{s} \frac{1}{2} (\mathbf{x} - \mathbf{x}_{b})^{\mathrm{T}} \mathbf{B}^{-1} (\mathbf{x} - \mathbf{x}_{b}) + \boldsymbol{\beta}_{e} \frac{1}{2} \sum_{i=1}^{\mathrm{N}} \boldsymbol{\alpha}_{i}^{\mathrm{T}} \mathbf{C}^{-1} \boldsymbol{\alpha}_{i}^{\mathrm{T}} \mathbf{C}^{\mathrm{T}} \mathbf{C}^{\mathrm{T}$$

 $\mathbf{x}_{e}^{'} = \sum_{i=1}^{N} \alpha_{i} \circ \mathbf{x}_{i}^{'}$, where $\mathbf{x}_{i}^{'}$ is the ensemble perturbation for the ensemble member i.

 \circ denote element - wise product. α_i is in effect the ensemble weight.

C: correlation matrix (effectively loclization of ensemble perturbations)

• In practical implementation, α_i can be reduced to horizontal 2D fields (i.e., use same weight in different vertical levels) to save computing cost.

• β_s and $\beta_e (1/\beta_s + 1/\beta_e = 1)$ can be tuned to have different weight between static and ensemble part.

Similarity to radiance VarBC equation

Modeling of errors in satellite radiances:

$$y = H(x_t) + B(\beta) + \varepsilon$$

$$\begin{cases} \langle \varepsilon \rangle = 0 \\ B(\beta) = \sum_{i=1}^{N} f(p_i) \end{cases}$$
Predictors:

• Offset (i.e., 1)

• 1000-300mb thickness

• 200-50mb thickness

• Surface skin temperature

• Total column water vapor

• Scan, Scan^2, Scan^3

Bias parameters can be estimated within the variational assimilation, jointly with the atmospheric model state.

Inclusion of the bias parameters in the control vector : $x^T \rightarrow [x, \beta]^T$

$$J_{b}: background term for x$$

$$J_{0}: corrected observation term$$

$$J(x, \beta) = (x_{b} - x)^{T} B_{x}^{-1}(x_{b} - x) + [y - H(x) - B(\beta)]^{T} R^{-1} [y - H(x) - B(\beta)]$$

$$+ (\beta_{b} - \beta)^{T} B_{\beta}^{-1}(\beta_{b} - \beta)$$

$$J_{p}: background term for β$$

WRFDA Tutorial, July 2012

Bias-correction coefficients

Hybrid formulation (3)

• Equivalently can write in another form (Wang et al., 2008)

$$J(\mathbf{x},\alpha) = \frac{1}{2} (\mathbf{x} + \mathbf{x}_e - \mathbf{x}_b)^{\mathrm{T}} (\frac{1}{\beta_s} \mathbf{B} + \frac{1}{\beta_e} \mathbf{B}_e \circ \mathbf{C})^{-1} (\mathbf{x} + \mathbf{x}_e - \mathbf{x}_b)$$
$$+ \frac{1}{2} [\mathbf{y} - H(\mathbf{x} + \mathbf{x}_e)]^{\mathrm{T}} \mathbf{R}^{-1} [\mathbf{y} - H(\mathbf{x} + \mathbf{x}_e)]$$

- This explains why **C** is for localization.
- This is also equivalent to Hamill and Snyder (2000).

Hybrid DA data flow

Ensemble Perturbations (extra input for hybrid)

WRFDA Tutorial, July 2012

EnKF-based Ensemble Generation

- EnKF with perturbed observations
- EnKF without perturbed observations
 - All based on square-root filter
 - Ensemble Transformed Kalman Filter (ETKF)
 - Ensemble Adjustment Kalman Filter (EAKF)
 - Ensemble Square-Root Filter (EnSRF)
- Most implementation assimilates obs sequentially (i.e., one by one, or box by box)
 - can be parallelized

Common practice of EnKF

• Kalman Filter equation for mean analysis

$$\overline{\mathbf{x}_{a}} = \overline{\mathbf{x}_{b}} + \mathbf{B}\mathbf{H}^{\mathrm{T}}(\mathbf{H}\mathbf{B}\mathbf{H}^{\mathrm{T}} + \mathbf{R})^{-1}[\mathbf{y} - H(\overline{\mathbf{x}_{b}})] = \overline{\mathbf{x}_{b}} + \mathbf{K}[\mathbf{y} - H(\overline{\mathbf{x}_{b}})]$$

EnKF uses forecast ensemble x^b_i (i=1~N) to estimate covariance matrices (Evensen, 1994)

$$\mathbf{B}\mathbf{H}^{\mathrm{T}} \approx \mathbf{X}_{b}^{'}(\mathbf{H}\mathbf{X}_{b}^{'})^{\mathrm{T}} = \frac{1}{\mathrm{N}-1} [\mathbf{X}_{b} - \overline{\mathbf{X}_{b}}] [H(\mathbf{X}_{b}) - \overline{H(\mathbf{X}_{b})}]^{\mathrm{T}}$$
$$\mathbf{H}\mathbf{B}\mathbf{H}^{\mathrm{T}} \approx (\mathbf{H}\mathbf{X}_{b}^{'})(\mathbf{H}\mathbf{X}_{b}^{'})^{\mathrm{T}} = \frac{1}{\mathrm{N}-1} [H(\mathbf{X}_{b}) - \overline{H(\mathbf{X}_{b})}] [H(\mathbf{X}_{b}) - \overline{H(\mathbf{X}_{b})}]^{\mathrm{T}}$$

• Problem left: how to obtain analysis perturbations (thus analysis ensemble) from forecast ensemble? $\mathbf{X}'_{h} \xrightarrow{ensemble update} \mathbf{X}'_{a}$

With relationship
$$\mathbf{A} = (\mathbf{I} - \mathbf{K}\mathbf{H})\mathbf{B}$$

$$\mathbf{X}_{\mathbf{a}}^{'}(\mathbf{X}_{\mathbf{a}}^{'})^{\mathrm{T}} = (\mathbf{I} - \mathbf{K}\mathbf{H})\mathbf{X}_{b}^{'}(\mathbf{X}_{b}^{'})^{\mathrm{T}}$$

Ensemble update: original implementation for ocean DA (Evensen, 1994)

• Perform an "ensemble of analyses" with each analysis using the same set of observations.

 $\mathbf{x}_{i}^{a} = \mathbf{x}_{i}^{b} + \mathbf{B}\mathbf{H}^{\mathrm{T}}(\mathbf{H}\mathbf{B}\mathbf{H}^{\mathrm{T}} + \mathbf{R})^{-1}[\mathbf{y} - H(\mathbf{x}_{i}^{b})], i = 1,...,N$

• Does not take into account uncertainty in observations, and cause underestimation of analysis error covariance.

Ensemble update: Perturbed observations (Houtekamer & Mitchell, 1998)

Perform an "ensemble of analyses" with each analysis using the randomly perturbed observations.

 $\mathbf{x}_{i}^{a} = \mathbf{x}_{i}^{b} + \mathbf{B}\mathbf{H}^{\mathrm{T}}(\mathbf{H}\mathbf{B}\mathbf{H}^{\mathrm{T}} + \mathbf{R})^{-1}[\mathbf{y}_{i} - H(\mathbf{x}_{i}^{b})], i = 1,...,N$

 $\mathbf{y}_i = \mathbf{y} + \boldsymbol{\varepsilon}_i,$

 ε_i is Gaussian random error with zero mean and covariance **R**.

Used by Environment Canada

Ensemble update: ETKF
(Bishop et al., 2001; Wang et al., 2007)
$$\mathbf{X}_{a}^{'} = \mathbf{X}_{b}^{'}\mathbf{T}$$
$$\mathbf{T} = r\mathbf{E}(\rho\lambda + \mathbf{I})^{-1/2}\mathbf{E}^{\mathrm{T}} (\mathrm{N} \times \mathrm{N} \text{ matrix})$$

• Where **E** and λ contain eigenvectors and eigenvalues of a NxN (N is ensemble size) matrix

 $(\mathbf{H}\mathbf{X}_{b}')^{T}\mathbf{R}^{-1}(\mathbf{H}\mathbf{X}_{b}')$

• r and ρ are tunable inflation factors.

ETKF is a simple/fast scheme. It is within WRFDA release.

Exist localized version: LETKF (Hunt et al., 2007)

WRFDA Tutorial, July 2012

Ensemble update: EAKF (built in DART) (Anderson, 2003; Liu et al., 2012)

- a two-step square-root filter
 - <u>adjustment</u> step (shift+compact) for observation space analysis

$$\mathbf{y}_i^a = \mathbf{A}_y^{1/2} (\mathbf{HBH}^{\mathbf{T}})^{-1/2} \left(\mathbf{y}_i^b - \overline{\mathbf{y}}^b \right) + \overline{\mathbf{y}}^a, \ i = 1, \dots, N$$

 <u>regression</u> step from observation space to model space analysis increment

$$\mathbf{x}_{i}^{a} - \mathbf{x}_{i}^{b} = \mathbf{B}\mathbf{H}^{\mathrm{T}}(\mathbf{H}\mathbf{B}\mathbf{H}^{\mathrm{T}})^{-1} (\mathbf{y}_{i}^{a} - \mathbf{y}_{i}^{b})$$

Ensemble update: EnSRF (Whitaker & Hamill, 2002)

 $\mathbf{x}_i^a = (\mathbf{I} - \tilde{\mathbf{K}}\mathbf{H})\mathbf{x}_i^b, i = 1,...,N$

$$\tilde{\mathbf{K}} = \left(\mathbf{I} + \sqrt{\frac{\mathbf{R}}{\mathbf{H}\mathbf{B}\mathbf{H}^T + \mathbf{R}}}\right)^{-1} \mathbf{K}$$

Should take scalar form for serial algorithm assimilating obs. one by one

Used by NOAA/NCEP

Sampling Error: noise in sample covariance

Sampling errors lead to spurious correlation for two distant points.

This can result in filter divergence.

Low-rank covariance (less degree of freedom), can not well fit dense/detailed observations.

Deal with sampling error (increase rank)

- 1. Use larger ensembles; expensive for large models.
- 2. Variance Inflation: increase ensemble spread.
- 3. Localization: reduce correlation as function of distance. Compactly supported correla tion function (Gaspari-Cohn) is most commonly used.

WRFDA Tutorial, July 2012

Advantages of the Hybrid DA

- Hybrid localization is in model space while EnKF localization is usually in observation space.
- For some observations type, e.g., radiances, localization is not well defined in observation space
- Easier to make use of existing radiance VarBC in hybrid
- For small-size ensemble, use of static B could be beneficial to have a higher-rank covariance.

Hybrid practice

Computation steps:

- Computing ensemble mean (gen_be_ensmean.exe).
- Extracting ensemble perturbations (gen_be_ep2.exe).
- Running WRFDA in "hybrid" mode (**da_wrfvar.exe**).
- Displaying results for: ens_mean, std_dev, ensemble perturbations, hybrid increments, cost function and, etc.
- If time permits, play with different namelist settings: "je_factor" and "alpha_corr_scale".
- Scripts to use:
 - Some NCL scripts to display results.

• Ensemble generation part not included in current practice

Namelist for WRFDA in hybrid mode

&wrfvar7

je_factor=2, # half/half for Jb and Je term

&wrfvar16 alphacv_method=2, # ensemble part is in model space (u,v,t,q,ps)

ensdim_alpha=10,

alpha_corr_type=3, # 1=Exponential; 2=SOAR; 3=Gaussian

alpha_corr_scale=750., # correlation scale in km

alpha_std_dev=1.,

alpha_vertloc=true, (use program "gen_be_vertloc.exe 42" to generate file)

References

T. M. Hamill and C. Snyder, 2000: A hybrid ensemble Kalman filter-3D variational analysis scheme. Mon. Wea. Rev., 128, 2905–2919.

Houtekamer, P. L., and H. L. Mitchell, 1998: Data assimilation using an ensemble Kalman filter technique. Mon. Wea. Rev, 126, 796–811.

Hunt, B. R., E. J. Kostelich, and I. Szunyogh, 2007: Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter. Physica D, 230, 112–126.

Lorenc, A. C., 2003: The potential of the ensemble Kalman filter for NWP—A comparison with 4D-VAR. Quart. J. Roy. Me teor. Soc., 129, 3183–3203.

Wang, X., D. Barker, C. Snyder, T. M. Hamill, 2008: A hybrid ETKF-3DVAR data assimilation scheme for the WRF model. Part I: observing system simulation experiment. *Mon. Wea. Rev.*, 136, 5116-5131.

References

Evensen, G., 1994: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res., 99, 10143-10162.

Bishop, C. H., B. J. Etherton, and S. J. Majumdar, 2001: Adaptive sampling with the ensemble transform Kalman filter. Part I: Theoretical aspects. Mon. Wea. Rev., 129, 420–436.

Anderson, J. L., 2003: A Local Least Squares Framework for Ensemble Filtering. Mon. Wea. R ev., 131, 634–642.

Whitaker, J. S., and T. M. Hamill, 2002: Ensemble Data Assimilation without Perturbed Observations. Mon. Wea. Rev., 130, 1913–1924.

Liu, Z., C. S. Schwartz, C. Snyder, and S.-Y. Ha, 2012: Impact of assimilating AMSU-A radiances on forecasts of 2008 Atlantic tropic al cyclones initialized with a limited-area ensemble Kalman filter. Mon. Wea. Rev., in press.