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Outline 
•  Hybrid formulation in variational 

framework 

•  Overview of ensemble generation methods 

•  Introduction to hybrid practice 
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Motivation of Hybrid DA 
•  3D-Var uses static (“climate”) BE 

•  4D-Var implicitly uses flow-dependent information, but 
still starts from static BE 

•  Hybrid uses flow-dependent background error covariance 
from forecast ensemble perturbation in a variational DA 
system 
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∑



T Analysis increments from a single obs at 
750mb near Typhoon center 

            HYBRID  
(32 ensemble members) 3DVAR 
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What is the Hybrid DA? 

•  Ensemble mean is analyzed by a variational algorithm (i.e., minimize a 
cost function).  
–  It combines (so “hybrid”) the 3DVAR “climate” background error 

covariance and “error of the day” from ensemble perturbation. 

•  Hybrid algorithm (again in a variational framework) itself usually does 
not generate ensemble analyses. 

•  Need a separate system to update ensemble 
–  Could be ensemble forecasts already available from NWP centers 
–  Could be an Ensemble Kalman Filter-based DA system 
–  Or multiple model/physics ensemble 

•  Ensemble needs to be good to well represent “error of the day”  
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Vector/Matrix expression of Ensemble 
•  Consider an ensemble of the model state vector of dimension M 

•  Ensemble mean is simply a column vector of Mx1 

•  (Normalized) Ensemble perturbation matrix also a MxN matrix 

•  Sample covariance matrix (MxM) formed by 

–  it is a low-rank matrix (i.e., only have at most N non-zero eigenvalues) 

� 

X = (x1 ,x2,...,xN),  N is the ensemble size
then X is a M × N matrix.  M ~ O(106~7), N ~ O(100).
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� 

x =
1

N −1
x i

i=1

N

∑

� 

X' =
1
N −1

(x1 − x,...,xN − x) = (x1
' ,...,xN

' )

� 

Be = X'(X')T
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Hybrid formulation (1) 
(Hamill and Snyder, 2000) 

•  3DVAR cost function 

•  Idea: replace B by a weighted sum of static Bs and the 
ensemble Be 

–  Has been demonstrated on a simple model. 
–  Difficult to implement for large NWP model.   

� 

J(x) =
1
2
(x − xb )

TB−1 (x − xb ) +
1
2
[H(x) − y]TR−1[H(x) − y]

� 

B = asBs +aeBe,  as =1- ae
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Hybrid formulation (2): used in WRFDA 
(Lorenc, 2003) 

•  Ensemble covariance is included in the 3DVAR cost function through 
augmentation of control variables 

•  In practical implementation, αi can be reduced to horizontal 2D fields 
(i.e., use same weight in different vertical levels) to save computing cost. 

•  βs and βe (1/βs + 1/βe =1) can be tuned to have different weight between 
static and ensemble part. 

  

� 

J(x,α) = βs
1
2

(x − xb )TB−1(x − xb ) + βe
1
2

α i
TC−1α i

i=1

N

∑
ensemble control variable α i  (M ×1)6 7 4 4 8 4 4 

                     +
1
2

[y − H(x + x e
' )]TR−1[y − H(x + x e

' )]

x e
' = α i o x i

'

i=1

N

∑ ,   where x i
'  is the ensemble perturbation for the ensemble member i.

o denote element - wise product.  α i is in effect the ensemble weight.
C :  correlation matrix (effectively loclization of ensemble perturbations)
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J(x,β) = (xb − x)
TBx

−1(xb − x) + y − H (x) − B(β)[ ]T R−1 y − H (x) − B(β)[ ]
+ (βb − β)TBβ

−1(βb − β)

Jb: background term for x	


Jp: background term for β	


Jo: corrected observation term 	


Bias parameters can be estimated within the variational assimilation, jointly with the atmospheric model state.	


Inclusion of the bias parameters in the control vector : xT  [x, β]T	


y = H (xt ) + B(β) + ε
B(β) = βi pi

i=1

N

∑

0=ε
Predictors:	


•  Offset (i.e., 1)	

•  1000-300mb thickness 	

•  200-50mb thickness	

•  Surface skin temperature	

•  Total column water vapor	

•  Scan, Scan^2, Scan^3	


Bias-correction coefficients	

Modeling of errors in satellite radiances: 

Similarity to radiance VarBC equation	
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Hybrid formulation (3) 

•  Equivalently can write in another form (Wang et al., 
2008) 

•  This explains why C is for localization. 

•  This is also equivalent to Hamill and Snyder (2000). 

  

� 

J(x,α) =
1
2

(x + x e − xb )T ( 1
βs

B +
1
βe

Be oC)−1(x + x e − xb )

           +
1
2

[y − H(x + x e )]
TR−1[y − H(x + x e )]
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Hybrid DA data flow 

xb 
Hybrid 

3/4D-Var xa 

� 

δx1
f

� 

δx2
f

� 

δxN
f

� 

yo

.	


.	


.	


Ensemble Perturbations (extra input for hybrid)	
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.	
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.	
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� 

x2
a

� 

xN
a

For cycling data assimilation/forecast 	

Experiment, need a mechanism to 	

update ensemble.	
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EnKF-based Ensemble Generation 

•  EnKF with perturbed observations 

•  EnKF without perturbed observations 
–  All based on square-root filter 
–  Ensemble Transformed Kalman Filter (ETKF) 
–  Ensemble Adjustment Kalman Filter (EAKF) 
–  Ensemble Square-Root Filter (EnSRF) 

•  Most implementation assimilates obs sequentially (i.e., one 
by one, or box by box) 
–  can be parallelized 
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Common practice of EnKF 
•  Kalman Filter equation for mean analysis 

•  EnKF uses forecast ensemble xi
b (i=1~N) to estimate covariance 

matrices (Evensen, 1994) 

•  Problem left: how to obtain analysis perturbations (thus analysis 
ensemble) from forecast ensemble? 
–  With relationship 
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� 

xa = xb + BHT (HBHT +R)-1[y − H(xb )]= xb +K[y − H(xb )]

� 

BHT ≈ Xb
' (HXb

' )T = 1
N -1

[Xb -Xb ][H(Xb ) -H(Xb )]
T

HBHT ≈ (HXb
' )(HXb

' )T = 1
N -1

[H(Xb ) -H(Xb )][H(Xb ) -H(Xb )]
T

� 

A = (I−KH)B
Xa
' (Xa

' )T = (I−KH)Xb
' (Xb

' )T
� 

Xb
' ensemble update⎯ → ⎯ ⎯ ⎯ ⎯ Xa

'



Ensemble update: original implementation  
for ocean DA (Evensen, 1994) 

•  Perform an “ensemble of analyses” with each analysis 
using the same set of observations. 

•  Does not take into account uncertainty in observations, and 
cause underestimation of analysis error covariance. 

� 

x i
a = x i

b + BHT (HBHT +R)-1[y − H(x i
b )], i =1,...,N
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Ensemble update: Perturbed observations 
(Houtekamer & Mitchell, 1998) 

•  Perform an “ensemble of analyses” with each analysis 
using the randomly perturbed observations.   

� 

x i
a = x i

b + BHT (HBHT +R)-1[y i − H(x i
b )], i =1,...,N

y i = y + ε i,   

ε i is Gaussian random error with zero mean and covariance R.
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Used by Environment Canada	
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Ensemble update: ETKF 
(Bishop et al., 2001; Wang et al., 2007) 

•  Where E and λ contain eigenvectors and eigenvalues of a 
NxN (N is ensemble size) matrix 

•  r and ρ are tunable inflation factors. 

� 

T= rE(ρλ + I)-1/2ET  (N × N matrix)
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ETKF is a simple/fast scheme. 	

It is within WRFDA release.	


Exist localized version: LETKF (Hunt et al., 2007)	


� 

Xa
' = Xb

' T

� 

(HXb
' )TR−1(HXb

' )



Ensemble update: EAKF (built in DART) 
(Anderson, 2003; Liu et al., 2012) 

•  a two-step square-root filter 
–  adjustment step (shift+compact) for observation space 

analysis 

–  regression step from observation space to model space 
analysis increment 
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� 

y i
a = A y

1/ 2(HBHT )−1/ 2 y i
b − yb( ) + ya,   i = 1,K,N

� 

x i
a − x i

b = BHT(HBHT )−1 y i
a − y i

b( )



Ensemble update: EnSRF  
(Whitaker & Hamill, 2002) 

� 

x i
a = (I− ˜ K H)x i

b,  i =1,...,N
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� 

˜ K = I +
R

HBHT + R
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

−1

K
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Used by NOAA/NCEP	


Should take scalar form for serial algorithm assimilating obs.  one by one	
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Sampling Error: noise in sample covariance 

Sampling errors lead to spurious 	

correlation for two distant points.	


This can result in filter divergence.	


Low-rank covariance (less degree 	

of freedom), can not well fit	

dense/detailed observations.	


17 
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Deal with sampling error (increase rank) 
1. Use larger ensembles; expensive for large models.	


2. Variance Inflation: increase ensemble spread.	


3. Localization: reduce correlation as function of distance. Compactly supported correla
tion function (Gaspari-Cohn) is most commonly used.	


Half-width	
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Advantages of the Hybrid DA 

•  Hybrid localization is in model space while EnKF 
localization is usually in observation space. 

•  For some observations type, e.g., radiances, localization is 
not well defined in observation space 

•  Easier to make use of existing radiance VarBC in hybrid 

•  For small-size ensemble, use of static B could be beneficial 
to have a higher-rank covariance. 
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Hybrid practice 
  Computation steps: 

•  Computing ensemble mean (gen_be_ensmean.exe). 
•  Extracting ensemble perturbations (gen_be_ep2.exe). 
•  Running WRFDA in “hybrid” mode (da_wrfvar.exe). 
•  Displaying results for: ens_mean, std_dev, ensemble 

perturbations, hybrid increments, cost function and, etc. 
•  If time permits, play with different namelist settings: 

“je_factor” and “alpha_corr_scale”. 
  Scripts to use: 

•  Some NCL scripts to display results. 

•  Ensemble generation part not included in current practice 
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Namelist for WRFDA in hybrid mode 

08/13/2010 Hybrid DA Tutorial, SNU, Seoul 

 &wrfvar7	

je_factor=2,     # half/half for Jb and Je term	


&wrfvar16	

 alphacv_method=2,       # ensemble part is in model space (u,v,t,q,ps)	


ensdim_alpha=10,       	


 alpha_corr_type=3,  # 1=Exponential; 2=SOAR; 3=Gaussian	


 alpha_corr_scale=750.,  # correlation scale in km	


 alpha_std_dev=1.,	


 alpha_vertloc=true,  (use program “gen_be_vertloc.exe 42” to generate file)	
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