
WRF Data Assimilation System

Michael Kavulich

Special thanks to:

Xin Zhang, Xiang-Yu Huang

WRFDA Tutorial, July 2012, NCAR!

Many slides are borrowed from WRF software lectures

Outline

•  Introduction

•  WRFDA Overview

•  Computing Overview

•  WRFDA Software Overview

Introduction – What is WRFDA?

•  A data assimilation system for the WRF Model (ARW core)

–  3D- and 4D-VAR, Ensemble, and Hybrid methods

•  Designed to be flexible, portable and easily installed and modified

–  Open-source and public domain
–  Can be compiled on a variety of platforms

–  Part of the WRF Software Framework

•  Designed to handle a wide variety of data

–  Conventional observations

–  Radar velocity and reflectivity
–  Satellite (radiance and derived data)

–  Accumulated precipitation

Introduction – WRFDA History

•  Developed from MM5 3DVar beginning around 2002, first version (2.0) released

December 2003

•  Developed and supported by WRFDA group of MMM, part of NESL

•  Requirements emphasize flexibility over a range of platforms, applications, users,

performance

•  Current release WRFDA v3.4 (April 2012)

•  Shares the WRF Software Framework

Outline

•  Introduction

•  WRFDA Overview

•  Computing Overview

•  WRFDA Software Overview

WRFDA Overview

• 

WRFDA Software Overview

•  Introduction

•  WRFDA Overview

–  Model background
–  Background error
–  Observations

–  Run WRFDA

–  Cycling mode

•  Computing Overview

•  WRFDA Software Overview

Model background

• 

WRFDA Software Overview

•  Introduction

•  WRFDA Overview

–  Model background

–  Background error
–  Observations

–  Run WRFDA

–  Cycling mode

•  Computing Overview

•  WRFDA Software Overview

Background error statistics

• 

WRFDA Software Overview

•  Introduction

•  WRFDA Overview

–  Model background

–  Background error
–  Observations
–  Run WRFDA

–  Cycling mode

•  Computing Overview

•  WRFDA Software Overview

Observations

• 

WRFDA Software Overview

•  Introduction

•  WRFDA Overview

–  Model background

–  Background error
–  Observations

–  Run WRFDA
–  Cycling mode

•  Computing Overview

•  WRFDA Software Overview

Run WRFDA

•  Once the background, background error, and observations are prepared, WRFDA is

ready to run

•  Detailed installation/run instructions will take place in the next talk

•  The output is the analysis, which can be used for research or to initialize a WRF

forecast

•  To initialize a WRF forecast, the boundary conditions must be updated, using

da_update_bc.exe

WRFDA Software Overview

•  Introduction

•  WRFDA Overview

–  Model background

–  Background error
–  Observations

–  Run WRFDA

–  Cycling mode

•  Computing Overview

•  WRFDA Software Overview

Cycling mode

•  Because WRFDA takes WRF forecast files as input, the system can naturally be run

in cycling mode

•  WRFDA initializes a WRF forecast, the output of which is fed back into WRFDA to

initialize another WRF forecast

•  Requires some specialized boundary condition updating

Outline

•  Introduction

•  WRFDA Overview

•  Computing Overview

•  WRFDA Software Overview

Parallel Computing Terms --
Hardware

•  Processor:
–  A device that reads and executes instructions in sequence from a

memory device, producing results that are written back to a
memory device

•  Node: One memory device connected to one or more processors.
–  Multiple processors in a node are said to share-memory and this

is “shared memory parallelism”
–  They can work together because they can see each other’s

memory
–  The latency and bandwidth to memory affect performance

Parallel Computing Terms --
Hardware

•  Cluster: Multiple nodes connected by a network
–  The processors attached to the memory in one node can not see the

memory for processors on another node
–  For processors on different nodes to work together they must send

messages between the nodes. This is “distributed memory parallelism”

•  Network:
–  Devices and wires for sending messages between nodes
–  Bandwidth – a measure of the number of bytes that can be moved in a

second
–  Latency – the amount of time it takes before the first byte of a

message arrives at its destination

Parallel Computing Terms –
System Software

•  Process:

–  A set of instructions to be executed on a processor

–  Enough state information to allow process execution to stop on a
processor and be picked up again later, possibly by another
processor

•  Processes may be lightweight or heavyweight

–  Lightweight processes, e.g. shared-memory threads, store very
little state; just enough to stop and then start the process

–  Heavyweight processes, e.g. UNIX processes, store a lot more
(basically the memory image of the job)

“The only thing one does directly with hardware is pay for it.”
 John’s Zeroth Law of Computing

Jobs, Processes, and Hardware

•  Message Passing Interface – MPI, referred to as the communication layer

•  MPI is used to start up and pass messages between multiple heavyweight

processes

–  The mpirun command controls the number of processes and how they are
mapped onto nodes of the parallel machine

–  Calls to MPI routines send and receive messages and control other
interactions between processes

–  http://www.mcs.anl.gov/mpi

Jobs, Processes, and Hardware

•  OpenMP is used to start up and control threads

within each process

–  Directives specify which parts of the program are multi-threaded

–  OpenMP environment variables determine the number of threads in each
process

–  http://www.openmp.org

•  OpenMP is usually activated via a compiler option

•  MPI is usually activated via the compiler name

•  The number of processes (number of MPI processes times the number of threads in

each process) usually corresponds to the number of processors

•  In general, WRFDA should not be run with shared memory!

Application: WRFDA

•  WRFDA can be run serially or as a parallel job

•  WRFDA uses domain decomposition to divide total amount of work over parallel

processes

Application: WRFDA

•  The decomposition of the application over processes has two levels:

–  The domain is first broken up into rectangular pieces that are
assigned to MPI (distributed memory) processes. These pieces
are called patches

–  The patches may be further subdivided into smaller rectangular
pieces that are called tiles, and these are assigned to shared-
memory threads within the process.

Model domains are decomposed for parallelism on two-levels
Patch: section of model domain allocated to a distributed memory node,
this is the scope of a minimization layer solver.

Tile: section of a patch allocated to a shared-memory processor within a
node; this is also the scope of a observation layer subroutine.

Distributed memory parallelism is over patches; shared memory parallelism
is over tiles within patches

•  Single version of code for efficient execution on:

–  Distributed-memory

–  Shared-memory (SMP)

–  Clusters of SMPs

–  Vector and microprocessors

Parallelism in WRFDA: Multi-level Decomposition

Logical
domain

1 Patch, divided
into multiple tiles

Inter-processor
communication

Distributed Memory Communications

Communication is required between patches when a
horizontal index is incremented or decremented on the right-
hand-side of an assignment.

On a patch boundary, the index may refer to a value that is
on a different patch.

Following is an example code fragment that requires
communication between patches

Note the tell-tale +1 and –1 expressions in indices for rr, H1,
and H2 arrays on right-hand side of assignment.

These are horizontal data dependencies because the
indexed operands may lie in the patch of a neighboring
processor. That neighbor’s updates to that element of the
array won’t be seen on this processor.

When!
Needed?!

Why?!

Signs in!
code!

 (da_transfer_xatowrf.inc)

subroutine da_transfer_xatowrf(grid)
. . .
 do k=kts,kte
 do j=jts,jte+1
 do i=its,ite+1
 u_cgrid(i,j,k)=0.5*(grid%xa%u(i-1,j ,k)+grid%xa%u(i,j,k))
 v_cgrid(i,j,k)=0.5*(grid%xa%v(i ,j-1,k)+grid%xa%v(i,j,k))
 end do
 end do
 end do
 . . .

Distributed Memory Communications

 (da_transfer_xatowrf.inc)

subroutine da_transfer_xatowrf(grid)
. . .
 do k=kts,kte
 do j=jts,jte+1
 do i=its,ite+1
 u_cgrid(i,j,k)=0.5*(grid%xa%u(i-1,j ,k)+grid%xa%u(i,j,k))
 v_cgrid(i,j,k)=0.5*(grid%xa%v(i ,j-1,k)+grid%xa%v(i,j,k))
 end do
 end do
 end do
 . . .

Distributed Memory Communications

•  Halo updates

Distributed Memory MPI
Communications

memory on one processor memory on neighboring processor

*
+ *
*

* *

•  Halo updates
•  Parallel transposes

Distributed Memory (MPI)
Communications

Distributed Memory (MPI)
Communications

all y on
patch

all z on
patch

all x on
patch

•  Halo updates
•  Parallel transposes

Review – Computing Overview

APPLICATION
(WRF)

HARDWARE
(Processors, Memories, Wires)

SYSTEM
(UNIX, MPI, OpenMP)

Domain contains Patches contain Tiles

Job contains Processes contain Threads

Cluster contains Nodes contain Processors

Distributed
Memory
Parallel

Shared
Memory
Parallel

Outline

•  Introduction

•  WRFDA Overview

•  Computing Overview

•  WRFDA Software Overview

WRFDA Software Overview

•  Introduction

•  WRFDA Overview

•  Computing Overview

•  WRFDA Software Overview

–  Architecture
–  Data Structures

–  I/O

•  Hierarchical software architecture

–  Insulate scientists' code from parallelism and other architecture/
implementation-specific details

–  Well-defined interfaces between layers, and external packages for
communications, I/O.

DA obs_type-callable
 Subroutine

WRFDA Software – Architecture

Registry.wrfvar

•  Registry: an “Active” data dictionary

–  Tabular listing of model state and attributes

–  Large sections of interface code generated automatically
–  Scientists manipulate model state simply by modifying Registry, without

further knowledge of code mechanics
–  Registry.wrfvar is the dictionary for WRFDA

Registry.wrfvar

DA obs_type-callable
 Subroutine

WRFDA Software – Architecture

•  Driver Layer
–  Domains: Allocates, stores, decomposes, represents abstractly as single

data objects

Registry

DA obs_type-callable
 Subroutine

WRFDA Software – Architecture

•  Minimization/Solver Layer
–  Minimization/Solver routine, choose the function based on the

namelist variable, 3DVAR, 4DVAR, FSO or Verification, and choose
the minimization algorithm.

Registry

DA obs_type-callable
 Subroutine

WRFDA Software – Architecture

•  Observation Layer
–  Observation interfaces: contains the gradient and cost function

calculation subroutines for each type of observations.

Registry

DA obs_type-callable
 Subroutine

WRFDA Software – Architecture

Call Structure Superimposed on
Architecture

da_wrfvar_main (var/da/da_main/da_wrfvar_main.f90)

da_wrfvar_run (da_main)

KFCPS (phys/module_ra_kf.F
KFCPS (phys/module_ra_kf.F
KFCPS (phys/module_ra_kf.F
KFCPS (phys/module_ra_kf.F
KFCPS (phys/module_ra_kf.F synop (da_synop/da-synop.f90)
sound (da_sound/da_sound.f90)

da_wrfvar_interface -> da_solve (da_main)

da_sound.f90(da_sound)

da_calculate_j (da_minimisation)

da_minimise_cg (da_minimisation)

WRFDA Software Overview

•  Introduction

•  WRFDA Overview

•  Computing Overview

•  WRFDA Software Overview

–  Architecture

–  Data Structures
–  I/O

Grid Representation in Arrays

•  Increasing indices in WRFDA arrays run

–  West to East (X, or I-dimension)

–  South to North (Y, or J-dimension)

–  Bottom to Top (Z, or K-dimension)

•  Storage order in WRFDA is IJK , but for WRF, it is IKJ (ARW) and IJK (NMM)

•  Output data has grid ordering independent of the ordering inside the WRFDA model

Grid Representation in Arrays

•  The extent of the logical or domain dimensions is always the "staggered" grid

dimension. That is, from the point of view of a non-staggered dimension (also

referred to as the ARW “mass points”), there is always an extra cell on the end of

the domain dimension

•  In WRFDA, the minimization is on A-grid (non-staggered grid). The wind

components will be interpolated from A-grid to C-grid (staggered grid) before they

are output

WRFDA Software Overview

•  Introduction

•  WRFDA Overview

•  Computing Overview

•  WRFDA Software Overview

–  Architecture

–  Data Structures

–  I/O

WRFDA I/O
•  Streams: pathways into and out of model

–  Input
•  fg is the name of the input
• wrfvar_output is the name of output

–  Boundary
• Only needed for 4DVAR.

Summary

•  WRFDA is designed to be an easy-to-use data assimilation system for use with the

WRF model

•  WRFDA is designed within the WRF Software Framework for rapid development and

ease of modification

•  WRFDA can be run in parallel for quick assimilation of large amounts of data

Appendix – WRFDA Resources

•  WRFDA users page

–  http://www.mmm.ucar.edu/wrf/users/wrfda

–  Download WRFDA source code, test data, related packages and documentation

–  Lists WRFDA news and developments

•  Online documentation

–  http://www.mmm.ucar.edu/wrf/users/docs/user_guide_V3/
users_guide_chap6.htm

–  Chapter 6 of the WRF Users’ Guide; documents installation of WRFDA and
running of various WRFDA methods

•  WRFDA user services and help desk

–  wrfhelp@ucar.edu

Appendix – Derived Data Structures
•  Driver layer
‒  All data for a domain is an object, a domain derived data type (DDT)
‒  The domain DDT is dynamically allocated/deallocated
‒  Only one DDT is allowed in WRFDA; it is head_grid, defined in frame/
module_domain.F

‒  WRFDA doesn’t support nested domains.

head_grid 1 •  Every Registry defined state, I1, and

namelist variable is contained inside the

DDT (locally known as a grid of type

domain), where each node in the tree

represents a separate and complete 3D

model domain/nest.

Appendix – Derived Data Structures

•  cvt

–  Real type array to store the control variables

–  It is an all-ZERO array during the first outer loop and will be
updated at the end of each outer loop

•  xhat

–  Real type array to store the control variables

–  It stores the control variables for each inner loop.

Appendix – Derived Data Structures

•  be

–  It is used to store the background error covariance.

Appendix – Derived Data Structures

•  iv

–  Stores the innovations for each observational type

•  ob

–  Stores the observations

•  re

–  Store the residual

•  Primarily written in Fortran and C

•  Part of the WRF Software Framework

–  Hierarchical organization
–  Multiple functions
–  Plug observation type interface
–  Abstract interfaces (APIs) to external packages
–  Performance-portable

3DVAR

minimization Interfaces

Plug-compatible physics
Plug-compatible physics

Plug-compatible physics
Plug-compatible physics Plug-compatible

Observation interface

4DVAR

Top-level Control,
Memory Management,

Parallelism, External APIs

M
in

im
iz

at
io

n
dr

iv
er

ob

se
rv

at
io

ns

FSO

Appendix – WRFDA structure

Appendix – More parallel
computing terms

•  Every job has at least one heavy-weight process.

–  A job with more than one heavy-weight process is a distributed-memory parallel job

–  Even on the same node, heavyweight processes do not share memory

•  Within a heavyweight process you may have some number of lightweight processes,

called threads.
–  Threads are shared-memory parallel; only threads in the same memory space can

work together.
–  A thread never exists by itself; it is always inside a heavy-weight process.

•  Heavy-weight processes are the vehicles for distributed memory parallelism

•  Threads (light-weight processes) are the vehicles for shared-memory parallelism

•  Since the process model has two levels (heavy-

weight and light-weight = MPI and OpenMP), the decomposition of the application

over processes has two levels:

–  The domain is first broken up into rectangular pieces that are assigned to
heavy-weight processes. These pieces are called patches

–  The patches may be further subdivided into smaller rectangular pieces that are
called tiles, and these are assigned to threads within the process.

Appendix – More parallel
computing in WRFDA

•  If the machine consists of 4 nodes, each with 4 processors, how many different ways can
you run a job to use all 16 processors?

–  4 MPI processes, each with 4 threads

setenv OMP_NUM_THREADS 4
mpirun –np 4 da_wrfvar.exe

‒  8 MPI processes, each with 2 threads

setenv OMP_NUM_THREADS 2
mpirun –np 8 da_wrfvar.exe

‒  16 MPI processes, each with 1 thread

setenv OMP_NUM_THREADS 1
mpirun –np 16 da_wrfvar.exe

4 threads

1 MPI

4 threads

1 MPI

4 threads

1 MPI

4 threads

1 MPI

Appendix – MPI/OpenMP

•  If the machine consists of 4 nodes, each with 4 processors, how many different ways can
you run a job to use all 16 processors?

‒  4 MPI processes, each with 4 threads

setenv OMP_NUM_THREADS 4
mpirun –np 4 da_wrfvar.exe

‒  8 MPI processes, each with 2 threads

setenv OMP_NUM_THREADS 2
mpirun –np 8 da_wrfvar.exe

‒  16 MPI processes, each with 1 thread

setenv OMP_NUM_THREADS 1
mpirun –np 16 da_wrfvar.exe

2 threads
2 threads

2 MPI

2 threads
2 threads

2 MPI

2 threads
2 threads

2 MPI

2 threads
2 threads

2 MPI

Appendix – MPI/OpenMP

•  If the machine consists of 4 nodes, each with 4 processors, how many different ways can
you run a job to use all 16 processors?

‒  4 MPI processes, each with 4 threads

setenv OMP_NUM_THREADS 4
mpirun –np 4 da_wrfvar.exe

‒  8 MPI processes, each with 2 threads

setenv OMP_NUM_THREADS 2
mpirun –np 8 da_wrfvar.exe

‒  16 MPI processes, each with 1 thread

setenv OMP_NUM_THREADS 1
mpirun –np 16 da_wrfvar.exe

4 MPI

4 MPI 4 MPI

4 MPI

Appendix – MPI/OpenMP

•  Note, since there are 4 nodes, we can never have fewer than 4 MPI processes

because nodes do not share memory

•  What happens on this same machine for the following?

setenv OMP_NUM_THREADS 8
mpirun –np 32 da_wrfvar.exe

Appendix – MPI/OpenMP

WRFDA
Top-Level
Directory
Structure

Makefile
README
README_test_cases
clean
compile
configure
Registry/

Registry.wrfvar
arch/
dyn_em/
dyn_nnm/
external/
frame/
inc/
main/
phys/
share/
tools/
var/
run/
test/

build
scripts

DA source
code directory

WRFDA Registry

WRFDA
Directory
Structure

Makefile
README.basics
README.namelist
README.radiance
build/
da/
external/
gen_be/
obsproc/
run/
test/

building directory

source
code
directories
execution
directories

WRFDA
Directory
Structure

DRIVER
MINIMIZATION
OBS

da_main/
da_minimization/
da_pilot/
da_qscat/
da_radar/
da_radiance/
da_metar/
da_ships/
da_synop/
da_gpsref/
da_metar/
…

source
code
directories

