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Outline 
• Background 

 
• Hybrid formulation in a variational 

framework 
 

• Some results 
 

• Introduction to hybrid practice 
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Motivation of Hybrid DA 
• 3D-Var uses static (“climate”) BE 

 
 

• 4D-Var implicitly uses flow-dependent information, but 
still starts from static BE 
 
 
 

• Hybrid uses flow-dependent background error covariance 
from forecast ensemble perturbation in a variational DA 
system 
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What is the Hybrid DA? 

• Ensemble mean is analyzed by a variational algorithm (i.e., minimize a 
cost function).  
– It combines (so “hybrid”) the 3DVAR “climate” background error 

covariance and “error of the day” from ensemble perturbation. 
 

• Hybrid algorithm (again in a variational framework) itself usually does 
not generate ensemble analyses. 
 

• Need a separate system to update ensemble 
– Could be ensemble forecasts already available from NWP centers 
– Could be an Ensemble Kalman Filter-based DA system 
– Or multiple model/physics ensemble 

 
• Ensemble needs to be good to well represent “error of the day”  
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Potential temperature increment, 21st model level 

single observation tests 

Pure EnKF 

Hybrid-full ensemble Hybrid 50/50 

3DVAR 
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Hybrid formulation (1) 
(Hamill and Snyder, 2000) 

• 3DVAR cost function 
 
 
 

• Idea: replace B by a weighted sum of static Bs and the 
ensemble Be 
 

 
– Has been demonstrated on a simple model. 
– Difficult to implement for large NWP model.   
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Hybrid formulation (2): used in WRFDA 
(Lorenc, 2003) 

• Ensemble covariance is included in the 3DVAR cost function through 
augmentation of control variables 
 
 
 
 
 
 

  
• In practical implementation, αi can be reduced to horizontal 2D fields 
(i.e., use same weight in different vertical levels) to save computing cost. 
 

• βs and βe (1/βs + 1/βe =1) can be tuned to have different weight between 
static and ensemble part. 
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Hybrid formulation (3) 

• Equivalently can write in another form (Wang et al., 
2008) 
 
 
 

 
• C is “localization” matrix 
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Hybrid DA data flow 

xb 
Hybrid 

3/4D-Var xa 
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Ensemble Perturbations (extra input for hybrid) 
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For cycling data assimilation/forecast  
Experiment, need a mechanism to  
update ensemble. 
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EnKF-based Ensemble Generation 
• EnKF with perturbed observations 

 
• EnKF without perturbed observations 

– All based on square-root filter 
– Ensemble Transformed Kalman Filter (ETKF) 
– Ensemble Adjustment Kalman Filter (EAKF) 
– Ensemble Square-Root Filter (EnSRF) 

 
• Most implementation assimilates obs sequentially (i.e., one 

by one, or box by box) 
– can be parallelized 
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Advantages of the Hybrid DA 

• Hybrid localization is in model space while EnKF 
localization is usually in observation space. 

 
• For some observation types, e.g., radiances, localization is 

not well defined in observation space 
 
• Easier to make use of existing radiance VarBC in hybrid 

 
• For small-size ensemble, use of static B could be beneficial 

to have a higher-rank covariance. 
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• Paula case: 0600 UTC 10 October  2010  to  1200 UTC 15 October 
2010; 

• Background: 15km interpolated from GFS data;  
• Resolution:  718x 373 (15km) and 43 levels; 
• Observations:  GTS  and TAMDAR; 
• Cycle frequency: 6 hours; 
• Background error:CV5; 
• Time widows: 2 hours;  

 
 

 
 
 

 
• TAMDAR: a new Tropospheric Airborne Meteorological Data Reporting 

(TAMDAR) observing system that has been developed by AirDat company. 

a Hurricane Case Study (Dongmei Xu) 



CYC1:assimilate  GTS and TAMDAR with Hybrid (w/ TAMDAR H); 
CYC2:same to CYC1,but no TAMDAR (w/o TAMDAR H) 
CYC3:assimilate GTS and TAMDAR with standard 3DVAR (Deterministic 
WRFDA) 

Experiments: 

Experimental design 



Brief introduction of TAMDAR inflation and fraction factor 



Brief introduction of TAMDAR Forecast Verification: RMSE 

+12hr 

+24hr 

V 
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T 
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Q 
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Brief introduction of TAMDAR Track Forecast Verification (+24hr) 
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Hybrid practice 
 Computation steps: 

• Computing ensemble mean (gen_be_ensmean.exe). 
• Extracting ensemble perturbations (gen_be_ep2.exe). 
• Running WRFDA in “hybrid” mode (da_wrfvar.exe). 
• Displaying results for: ens_mean, std_dev, ensemble 

perturbations, hybrid increments, cost function 
• If time permits, play with different namelist settings: 

“je_factor” and “alpha_corr_scale”. 
 Scripts to use: 

• Some NCL scripts to display results. 
 

• Ensemble generation part not included in current practice 
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Namelist for WRFDA in hybrid mode 
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 &wrfvar7 
je_factor=2,     # half/half for Jb and Je term 
  
&wrfvar16 
 alphacv_method=2,       # ensemble part is in model space (u,v,t,q,ps) 
  
ensdim_alpha=10,        
 
 alpha_corr_type=3,  # 1=Exponential; 2=SOAR; 3=Gaussian 
 
 alpha_corr_scale=750.,  # correlation scale in km 
 
 alpha_std_dev=1., 
 
 alpha_vertloc=true,  (use program “gen_be_vertloc.exe 42” to generate file) 
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