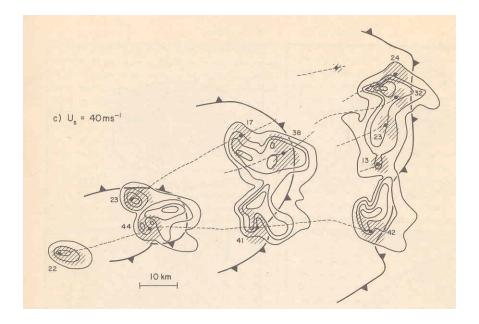


Doppler Radar Data Assimilation with WRFDA

Juanzhen Sun, NCAR

Email: sunj@ucar.edu

Outline

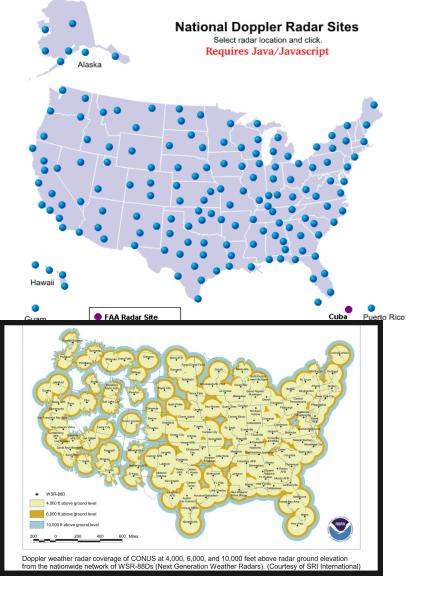

- Introduction
 - Review of radar DA
 - Examples of 3DVar radar DA
- Radar observations and quality issues
- Methodology
 - Observation operator
 - Control variables and increments

Procedure

- BES generation
- Input format and configuration
- Parameter tuning
- Issues and ongoing development

Cloud-scale modeling since 1960's

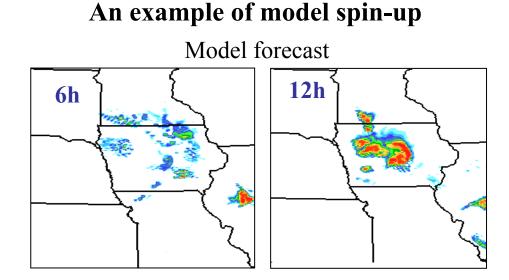
- Used as a research tool to study dynamics of moist convection
- Initialized by artificial thermal bubbles superimposed on a single sounding
- Rarely compared with observations

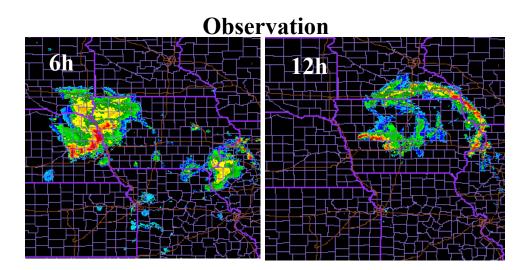

From Weisman and Klemp (1984)

NWP of thunderstorms - has its time come?

Lilly's motivating publication (1990)

- NEXRAD network
- Increasing computer power
- Advanced DA techniques
- Experience in cloud-scale modeling
- Increasing need for accurate forecast of precipitation timing & location
- The key is to initialize models with high-resolution radar data


From 1990 to now

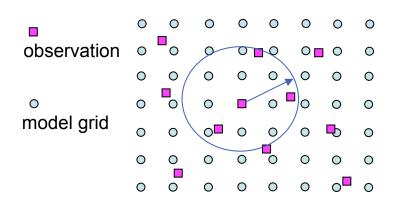

- Single Doppler retrieval (e.g., Sun et al. 1990)
- Assimilation into NWP models
 - Successive correction (LAPS, Albers 1995)
 - Newtonian nudging (Xu et al. 2004)
 - 3DVar (Xiao et al., 2005)
 - 4DVar (Sun and Crook, 1997)
 - EnKF (Snyder and Zhang, 2004)
- Impact studies on precipitation forecast
 - NCAR WRF (Xiao and Sun 2007)
 - CAPS ARPS (Hu et al., 2006)
 - JMA NHM (Kawabata et al. 2007)
 - UK Met Office Unified Model

Applications of radar data assimilation

- Improvement of cloudpermitting simulation and forecast
- Analysis and study of high impact weather
- Nowcasting
- Wind energy prediction
- Prediction of chemical dispersion

0 0 0

Comparing radar DA with conventional DA

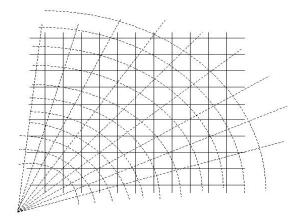

Conventional DA

Obs. resolution ~ a few 100 km -much poorer than model resolutions

Every variable (except for w) is observed

Optimal Interpolation

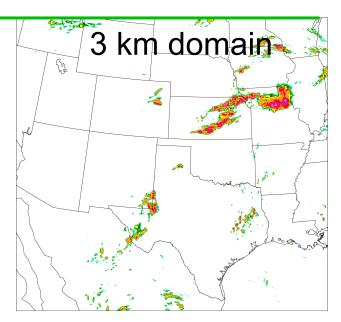
Balance relations

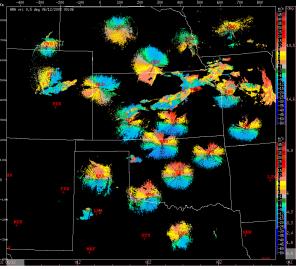

Radar DA

Obs. resolution ~ a few km -equivalent to model resolutions

Only radial velocity and reflectivity are observed

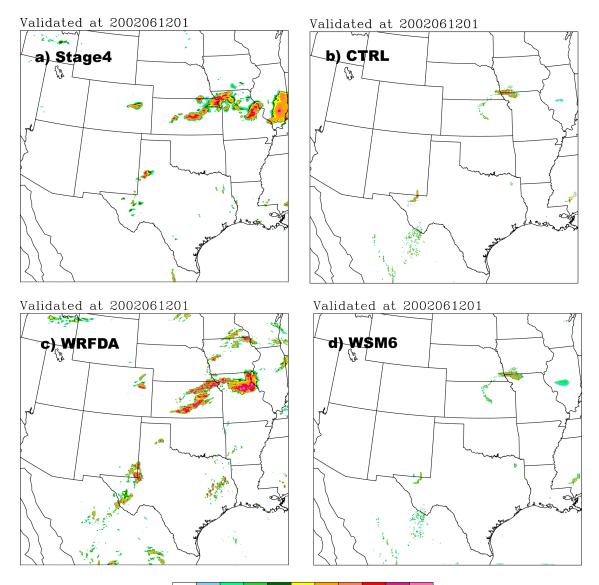
Retrieval of the unobserved fields


Temporal terms essential


- 2002-2005 Development of WRFDA 3DVar radial velocity data assimilation (Xiao et al. 2005)
- 2004-2007 Development of WRFDA 3DVar reflectivity data assimilation (Xiao et al. 2007)
- 2008 Operational testing and implementation at KMA (Xiao et al. 2008)
- 2005-now Impact studies with ground-based and airborne radars (Xiao and Sun 2006, Li et al., 2009)
- 2008-now Development and testing of WRFDA 4DVar radar data assimilation

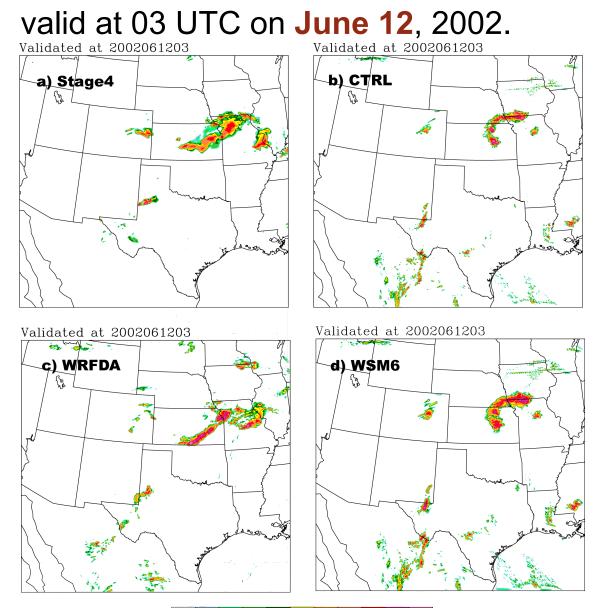
Impact of 3DVar radar DA with IHOP one week data

- CTRL Baseline run initialized by ETA analysis MYJ PBL, Thompson microphysics
- GFS Same as CTRL but initialized by GFS global analysis
- WRFDA WRF 3DVAR with 3-hourly update cycle radial velocity data assimilation
- WSM6 Same as CTRL but with WSM6 microphysics



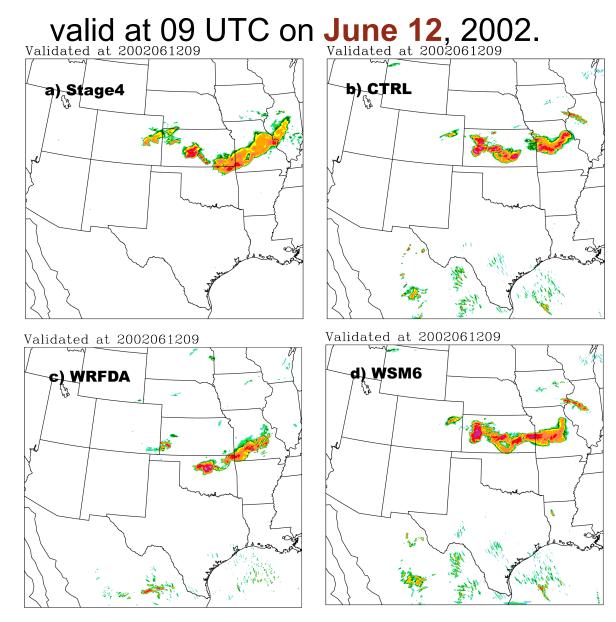
25 NEXRADs assimilated in WRFDA

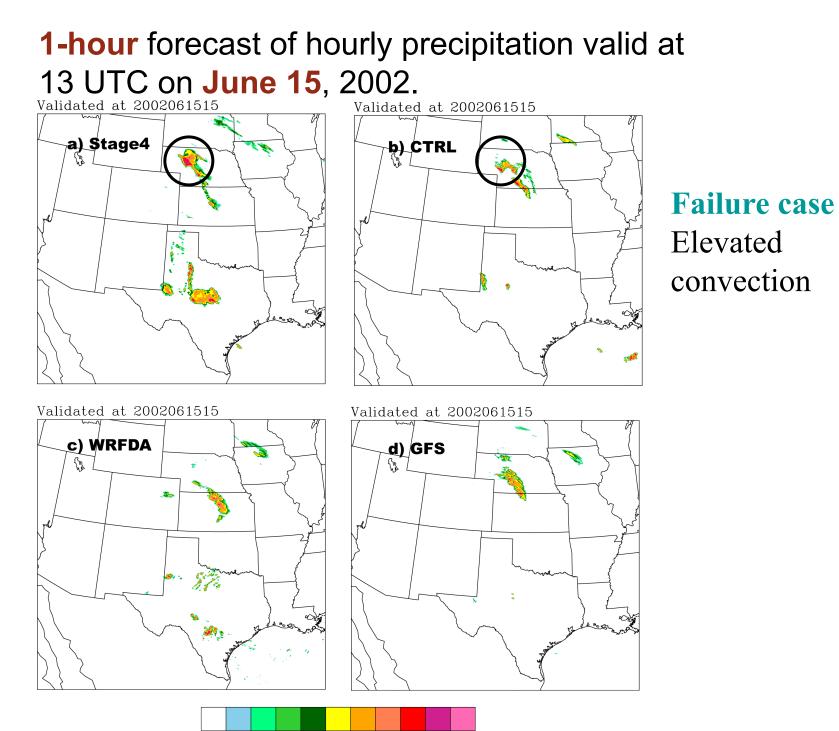
1-hour forecast of hourly precipitation


valid at 01 UTC on June 12, 2002.

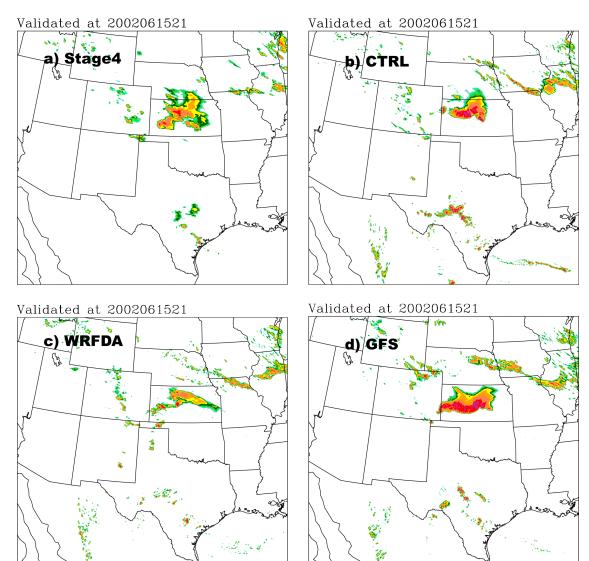
Success Case Surface based convection

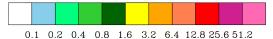
 0.1
 0.2
 0.4
 0.8
 1.6
 3.2
 6.4
 12.8
 25.6
 51.2


3-hour forecast of hourly precipitation


0.1 0.2 0.4 0.8 1.6 3.2 6.4 12.8 25.6 51.2

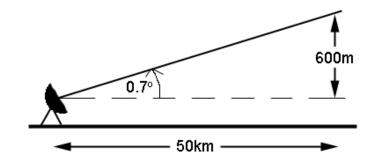
9-hour forecast of hourly precipitation




0.1 0.2 0.4 0.8 1.6 3.2 6.4 12.8 25.6 51.2

0.1 0.2 0.4 0.8 1.6 3.2 6.4 12.8 25.6 51.2

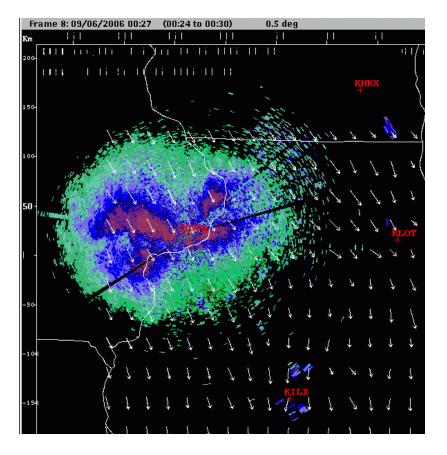
9-hour forecast of hourly precipitation valid at 21 UTC on **June 15**, 2002.

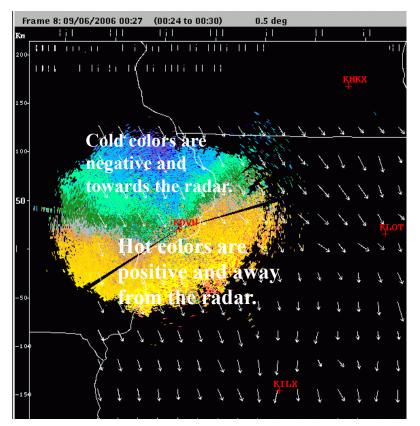


Doppler radar observations

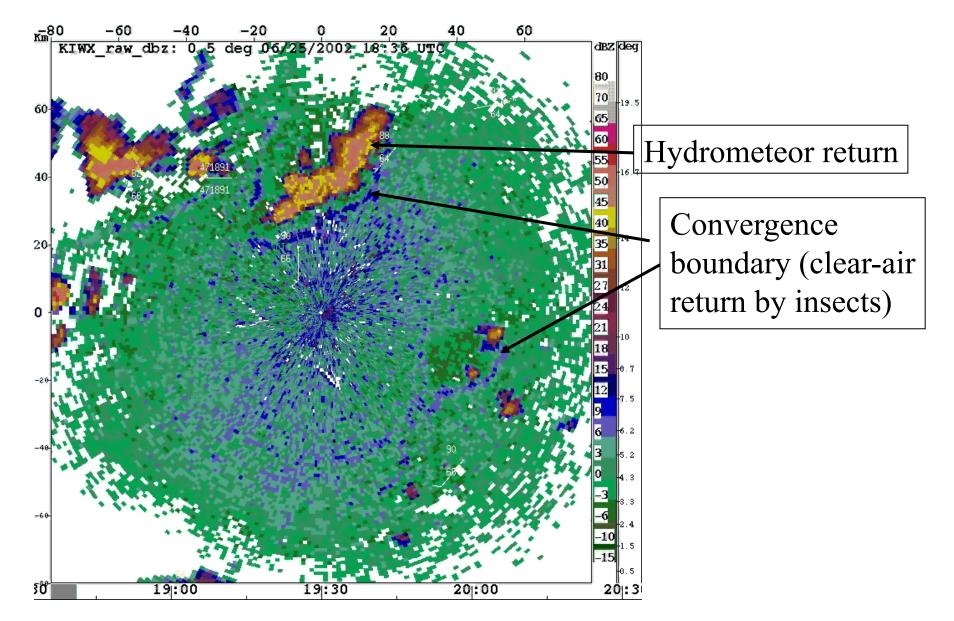
- The NEXRAD level II data are volumetric radial velocity and reflectivity data with some basic quality control
- High spatial (250m/1km) and temporal resolution (5-10 min), but coverage is limited to regions with reflectors
 - Clear-air echo from insects in boundary layer with a typical range of 60-100km
 - Storm echo from hydrometeors in precipitation

region with a range of 230 km

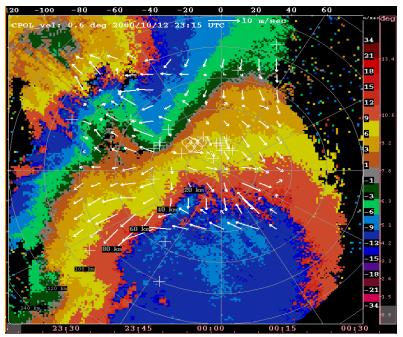

 Huge amount of data (in a storm mode, the estimate number of data is ~3 million/ 5minute from one radar



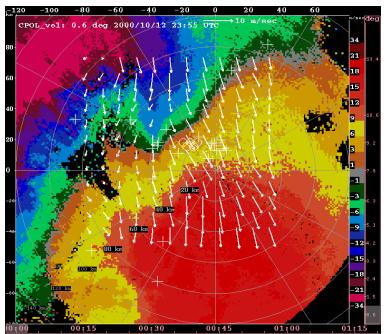
Examples of radar observations 1. No rain (clear air)


Reflectivity

Radial velocity



Examples of radar observations 2. Convective storm



Doppler radar quality control

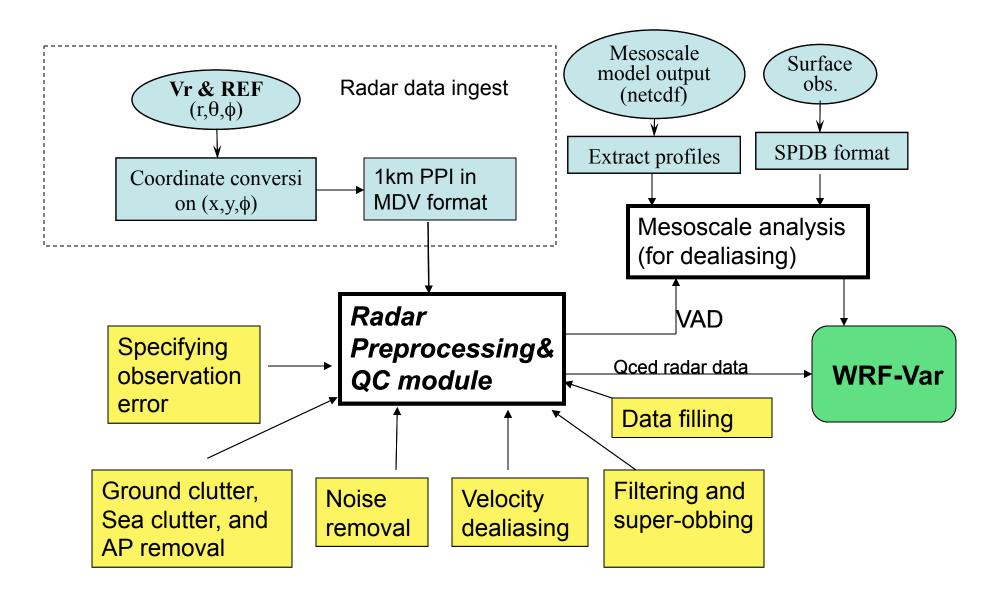
- Data quality control is a major issue for radar data assimilation
 - Dealiasing
 - radial velocity greater than Nyquest velocity is aliased
 - Removal of clutters, second-trip echo and other noises

Aliased velocities

De-aliased velocities

Doppler radar data preprocessing

- Preprocessing Doppler radar data is an important procedure before assimilation.
- It usually contains the following:
 - Quality control
 - To deal with clutter, AP, folded velocity, and other noises
 - Mapping
 - Interpolation, smoothing, superobservation, data filling
 - Error statistics
 - Variance and covariance



Local Standard Deviation as an error estimator

Doppler radar data preprocessing

- NCAR software:
 - SPRINT: Sorted Position Radar INTerpolation
 - CEDRIC: Custom Editing and Display of Reduced Information in Cartesian-space
 - SPRINT and CEDRIC are released in NCAR/MMM website http://www.mmm.ucar.edu/pdas/pdas.html
- NCAR software:
 - VDRAS: Variational Doppler Radar Analysis System
 - VDRAS is not released to the public
- There is no standard software included in WRF-VAR

VDRAS data ingest, preprocessing, & QC

Observation operators

Radial velocity

$$v_r = u \frac{x - x_i}{r_i} + v \frac{y - y_i}{r_i} + (w - v_T) \frac{z - z_i}{r_i}$$
$$v_T = 5.40a \cdot q_r^{0.125}, \quad a = (p_0 / \overline{p})^{0.4}$$

• Reflectivity

 $dbZ = 43.1 + 17.5 \log(\rho q_r)$

Additional increments w' and qr'

> WRF 3D-Var

- Control variables (ψ', χ_u', T'_u, p'_{su}, r'_s)
 <=> model variables (u', v', T', p', q')
- Doppler radar data assimilation

Radial velocity data

3D-Var needs vertical velocity increments (w') to have a full assimilation of radial velocity data.

Reflectivity data

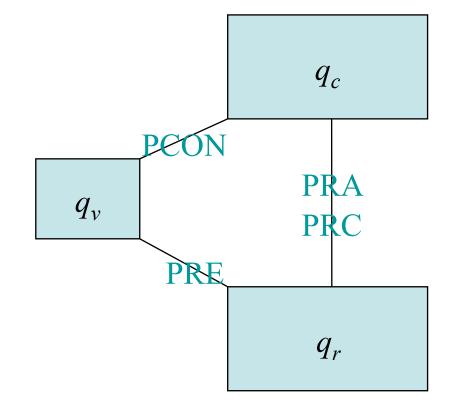
3D-Var needs at least rainwater increments (qr').

It is better to have increments of all other

hydrometeor variables as well in 3D-Var analysis.

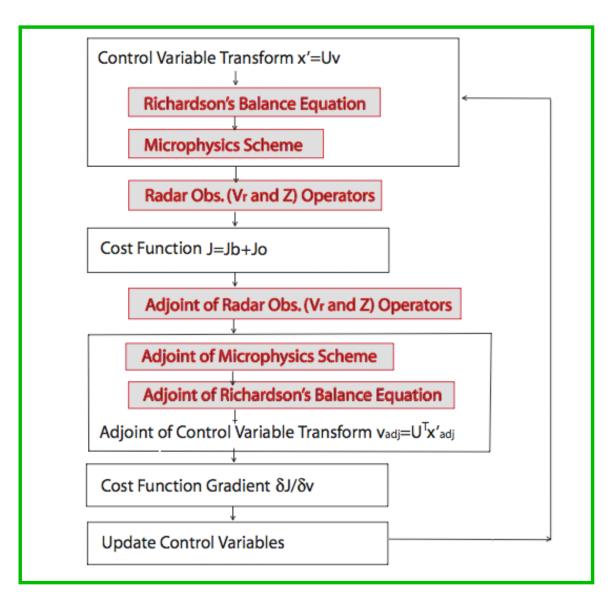
> w' and q_r' are obtained through diagnostic relations

Diagnose W Increment


• Richardson's Equation $(\psi', \chi_u', T'_u, p'_{su} \rightarrow u', v', T', p' \rightarrow w')$

$$\gamma \,\overline{p} \,\frac{\partial w'}{\partial z} = -\gamma \,p' \frac{\partial \overline{w}}{\partial z} - \gamma \,\overline{p} \nabla \cdot \vec{v'}_h - \gamma \,p' \nabla \cdot \vec{\overline{v}}_h - \vec{\overline{v}}_h \nabla p'$$
$$-\vec{v}' \nabla \overline{p} + g \int_z^\infty \nabla \cdot (\rho \vec{v'}_h) dz + g \int_z^\infty \nabla \cdot (\rho' \vec{\overline{v}}_h) dz$$

- Richardson's equation is a higher-order approximation of the continuity equation than the incompressible continuity equation or anelastic continuity equation.
- It can build an efficient linkage between dynamic and thermodynamic fields because the thermodynamic equation is directly involved.
- Its computation is affordable, just a little more than the anelastic continuity equation.


Diagnose hydrometeor increments

A warm rain process is currently built in WRF 3D-Var to bridge water hydrometeors and other variables.

PCON: condensation/evaporation; PRA: accretion; PRC: conversion; PRE: evaporation/deposition

Flow Chart of Radar Data Assimilation in WRF 3D-Var

Steps to run WRFDA 3DVar with radar data

- Prepare the background error statistics (BES) file for your application domain
 - Create the BES from an existed BES file by using the interpolation function in WRFDA, or
 - Run WRF model to get a set of the forecasts initiated from a period of initial times, then create the BES by using the script: *WRFDA/var/scripts/gen_be/gen_be_wrapper.ksh*
- Prepare the first guess: either from WPS+WRF/real.exe (cold-start) or from the WRF model historic output file (warm-start)
- Prepare the observation data files including the radar radial velocity and reflectivity data, and/or the conventional observation data
- Edit the *namelist.input* file and Build the executable: *wrfvar.exe*
- Link the input files, wrfvar.exe, and certain ancillary files: LANDUSE.TBL, gribmap.txt, etc. in your working directory
- Run wrfvar.exe, and check the results

Data format

TOTAL RADAR (14X, I3) - FMT = (A14, I3)

Head record for specific Radar information (site, lon0, lat0, elv, date, # of data locations, max_levs) - FMT = (A5,2X,A12,2(F8.3,2X),F8.1,2X,A19,2I6) #------

Head record for the specific location (FM-128 RADAR, date, lat, lon, elv, levs) -- FMT=(A12,3X,A19,2X,2(F12.3,2X),F8.1,2X,I6) Data-level record (height<m>, Radial V<m/s>, qc, err, Reflectivity<dbz>, qc, err)

#_____

Data-level record (height <m>, Radial_V <m/s>, qc, err, Reflectivity <dbz>, qc, err)

.....

- FMT=(3X,F12.1,2(F12.3,I4,F12.3,2X))

Head record for specific Radar information (site, lon0, lat0, elv, date, # of data locations, max_levs) #______

Head record for the specific location (FM-128 RADAR, date, lat, lon, elv, levs) Data-level record (height<m>, Radial_V<m/s>, qc, err, Reflectivity<dbz>, qc, err) Data-level record (height<m>, Radial_V<m/s>, qc, err, Reflectivity<dbz>, qc, err)

An example of input data

TOTAL RADAR = 2

#		+	ŧ	
	NDO 126.328 34.471 R 2002-08-31_00:00:00			9
FM-128 RADAI	R 2002-08-31_00:00:00	34.314 124.003	499.0	2
3803.5	7.918 1 0.500	17.704 1	1.125	
	8888.000 -88 -8888888.000			
FM-128 RADAI	R 2002-08-31_00:00:00	34.360 124.002	499.0	2
3795.2	7.125 1 0.500	18.214 1	1.160	
	8888.000 -88 -8888888.000			
FM-128 RADAI	R 2002-08-31_00:00:00 6.714 1 0.598	34.405 124.000	499.0	2
3790.2	6.714 1 0.598	14.864 0	0.707	
7459.0 -88	8888.000 -88 -8888888.000	0 -888888.000 -88 -888	888.000	
FM-128 RADAI	R 2002-08-31_00:00:00 4.118 0 0.500	35.275 123.974	499.0	2
4325.9	4.118 0 0.500	16.650 0	3.959	
8315.9 -88	8888.000 -88 -8888888.000	-888888.000 -88 -888	888.000	
FM-128 RADAI	NDO 126.328 34.471 R 2002-08-31_00:00:00	34.314 124.003	499.0	9 2
	7.918 1 0.500			
	8888.000 -88 -8888888.000			
FM-128 RADAI	R 2002-08-31_00:00:00 7.125 1 0.500	34.360 124.002	499.0	2
	8888.000 -88 -8888888.000			
FM-128 RADAI	R 2002-08-31_00:00:00 6.714 1 0.598	34.405 124.000	499.0	2
	8888.000 -88 -8888888.000			
	R 2002-08-31_00:00:00			2
	4.118 0 0.500			
83159-88	8888 000 -88 -888888 000	-888888.000 -88 -888	888 000	
0510.9 00		000000.000 00 000	000.000	

.....

• In the namelist.input, the following additions should be made for radar data assimilation:

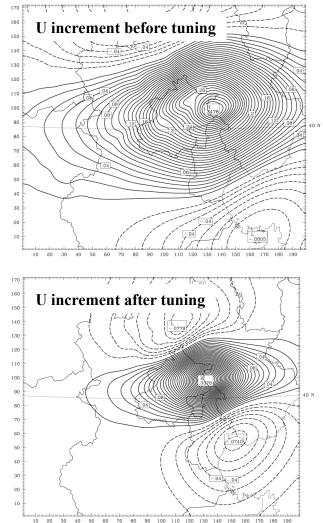
&wrfvar2
CALC_W_INCREMENT = T (to have w increments)

&wrfvar4 USE_RADAROBS = T (to assimilate radar data) USE_RADAR_RV = T (to assimilate radial velocity) USE_RADAR_RF = T (to assimilate reflectivity)

Linking the radar observation file

• In the run working directory, link the radar observation file.

ln -sf /ptmp/hsiao/tutorial08/ob.radar ./test/ob.radar


 This is the only additional dataset you should include for radar data assimilation. Other input files for WRF-Var are the same as conventional data assimilation.

Tuning BES parameters

To change BES variance and length scale, do the following in your execution script:

export NL_VAR_SCALING1=0.5 export NL_VAR_SCALING2=0.5 export NL_VAR_SCALING3=0.5 export NL_VAR_SCALING4=0.5 export NL_VAR_SCALING5=0.5

export NL_LEN_SCALING1=0.5 export NL_LEN_SCALING2=0.5 export NL_LEN_SCALING3=0.5 export NL_LEN_SCALING4=0.5 export NL_LEN_SCALING5=0.5

Tuning O-B error tolerance

The parameter max_error_rv in Registry/Registry.wrfvar has a default value of 5.0. When o-b is <= max_error_rv*rv_error, the observation will be assimilated in WRFDA.

Change max_error_rv or/and rv_error in Registry/Registry.wrfvar

rconfig real max_error_rv "max_error_rv" "" "" rconfig real max_error_rf "max error rf" "" ""

- namelist, wrfvar5 1 5.0 -
- namelist, wrfvar5 1 5.0 -

Issues and ongoing development

3DVar radar DA

- More evaluation and study are needed
 - Why performance is situation dependent
 - BES tuning
 - Continuous cycle
- Improve the reflectivity data assimilation

4DVar Radar DA

- New control variables (w and microphysics are added)
- Adjoint of dynamical core and warm rain microphysics are developed
- A case study is being conducted