
WRF Data Assimilation System

Michael Kavulich

Special thanks to:

Xin Zhang, Xiang-Yu Huang

WRFDA Tutorial, July 2013, NCAR

Many slides are borrowed from WRF software lectures

WRFDA System – Outline

• Introduction

• WRFDA Software Overview

• Computing Overview

Introduction – What is WRFDA?

• A data assimilation system for the WRF Model (ARW core)
– 3D- and 4D-VAR, Ensemble, and Hybrid methods

• Designed to be flexible, portable and easily installed and
modified
– Open-source and public domain
– Can be compiled on a variety of platforms
– Part of the WRF Software Framework

• Designed to handle a wide variety of data
– Conventional observations
– Radar velocity and reflectivity
– Satellite (radiance and derived data)
– Accumulated precipitation

Blue: Supported by WRFDA team

WRFDA System – Outline

• Introduction

• WRFDA Software

• Computing Overview

program da_wrfvar_main
 !---
 ! Purpose: Main program of WRF-Var. Responsible for starting up, reading
 ! in (and broadcasting for distributed memory) configuration data, defining
 ! and initializing the top-level domain, either from initial or restart
 ! data, setting up time-keeping, and then calling the da_solve
 ! routine assimilation. After the assimilation is completed,
 ! the model is properly shut down.
 !---
 use module_symbols_util, only : wrfu_finalize
 use da_control, only : trace_use, var4d
 use da_tracing, only : da_trace_init, da_trace_report, da_trace_entry, &
 da_trace_exit
 use da_wrf_interfaces, only : wrf_shutdown, wrf_message, disable_quilting
 use da_wrfvar_top, only : da_wrfvar_init1,da_wrfvar_init2,da_wrfvar_run, &
 da_wrfvar_finalize
#ifdef VAR4D
 use da_4dvar, only : clean_4dvar, da_finalize_model
#endif
 implicit none
 ! Split initialisation into 2 parts so we can start and stop trace here
 call disable_quilting
 call da_wrfvar_init1
 if (trace_use) call da_trace_init
 if (trace_use) call da_trace_entry("da_wrfvar_main")
 call da_wrfvar_init2
 call da_wrfvar_run
 call da_wrfvar_finalize
#ifdef VAR4D
 if (var4d) then
 call clean_4dvar
 call da_finalize_model
 end if
#endif
 call wrf_message("*** WRF-Var completed successfully ***")
 if (trace_use) call da_trace_exit("da_wrfvar_main")
 if (trace_use) call da_trace_report
 call wrfu_finalize
 call wrf_shutdown
end program da_wrfvar_main

arch
clean
compile
configure
dyn_em
dyn_exp
external
frame
inc
main
Makefile
phys
README.DA
Registry
run
share
test
tools
var

build
scripts

WRFDA source
code directory

Contains registry.var

WRFDA Directory structure

Legend:
Blue – directory
Green – script file
Gray – other text file

README file with information about WRFDA

build
convertor
da
external
gen_be
graphics
Makefile
obsproc
README.basics
README.namelist
README.radiance
run
scripts
test

More README files with
useful information

WRFDA/var Directory structure

Legend:
Blue – directory
Green – script file
Gray – other text file

Executables built here

WRFDA source code contained here
Source code for external libraries (CRTM, BUFR, etc.)
GEN_BE source code

OBSPROC source code

Useful runtime files (mostly for radiance)

Data for tutorial cases

• Hierarchical software architecture
– Insulate scientists' code from parallelism and other

architecture/implementation-specific details
– Well-defined interfaces between layers, and

external packages for communications, I/O.

DA obs_type-callable
 Subroutine

WRFDA Software – Architecture

registry.var

• Registry: an “Active” data dictionary

– Tabular listing of model state and attributes
– Large sections of interface code generated automatically
– Scientists manipulate model state simply by modifying

Registry, without further knowledge of code mechanics
– registry.var is the dictionary for WRFDA

registry.var

DA obs_type-callable
 Subroutine

WRFDA Software – Architecture

• Driver Layer
– Domains: Allocates, stores, decomposes, represents

abstractly as single data objects

Registry

DA obs_type-callable
 Subroutine

WRFDA Software – Architecture

• Minimization/Solver Layer

– Minimization/Solver routine, choose the function
based on the namelist variable, 3DVAR, 4DVAR,
FSO or Verification, and choose the minimization
algorithm.

Registry

DA obs_type-callable
 Subroutine

WRFDA Software – Architecture

• Observation Layer
– Observation interfaces: contains the gradient and

cost function calculation subroutines for each type
of observations.

Registry

DA obs_type-callable
 Subroutine

WRFDA Software – Architecture

Call Structure Superimposed on
Architecture

da_wrfvar_main (var/da/da_main/da_wrfvar_main.f90)

da_wrfvar_run (da_main)

KFCPS (phys/module_ra_kf.F
KFCPS (phys/module_ra_kf.F
KFCPS (phys/module_ra_kf.F
KFCPS (phys/module_ra_kf.F
KFCPS (phys/module_ra_kf.F synop (da_synop/da-synop.f90)
sound (da_sound/da_sound.f90)

da_wrfvar_interface -> da_solve (da_main)

da_sound.f90(da_sound)

da_calculate_j (da_minimisation)

da_minimise_cg (da_minimisation)

http://box.mmm.ucar.edu/wrf/WG2/bench/

WRFDA broken down by process

Namelist xb y, R B

Read
namelist

Set up
framework

Set up
background

Set up
observations

and error

Set up
background

error

Calculate
y − H (x) Minimize cost function Compute

analysis

Calculate
diagnostics Clean up

Diagnostics

Formulate
analysis

xa

Outer loop

WRFDA broken down by process

Namelist Input
files

Diagnostics

Read
namelist

Set up
framework

Set up
background

Set up
observations

and error

Set up
background

error

Calculate
y − H (x) Minimize cost function Compute

analysis

Calculate
diagnostics Clean up Formulate

analysis

xa

Outer loop

xb y, R B

Input files: Namelist

• File name: namelist.input

• Specifies Input/Output options, domain details, types of
observations to assimilate and how to assimilate them

• Allows user great flexibility to change the usage of WRFDA
without having to recompile

• A large number (>1000) of namelist options govern the running
of WRFDA; however, users will typically only be concerned
with setting a few dozen of these

• More details can be found in the User’s Guide

Input files: xb (background)

• File name: fg

• Can be either a WRF input file created by WPS and real.exe,
or a WRF output file from a forecast.

Input files: y (observations)
 and R (observation errors)

• File name: ob.ascii, amsua.bufr, ob01.rain, etc.

• WRFDA accepts a wide variety of observations in several
different formats
– OBSPROC ASCII format (surface, sounding, GPS, etc.)
– PREPBUFR format (surface, sounding, etc.)
– BUFR format (radiance)
– Other ASCII format (radar, precipitation)

• Observation errors are either provided in the observation file,
or standard errors (file name: obserr.txt) are used.

Input files: B (background error)

• File name: be.dat

• This is a binary file containing background error information
– cv_options=3 NCEP background error formulation

• File provided with WRFDA code
• Not recommended: should be used with caution

– cv_options=5 NCAR background error formulation
• File created using gen_be utility
• Recommended option

– cv_options=6; Multivariate Background Error (MBE)
statistics

• Not officially supported

WRFDA broken down by process

Namelist xb y, R B

Read
namelist

Set up
framework

Set up
background

Set up
observations

and error

Set up
background

error

Minimize cost function Compute
analysis

Calculate
diagnostics Clean up

WRFDA
Processes

Diagnostics xa

Formulate
analysis

Outer loop

Calculate
y − H (x)

Read namelist

Set up
framework

Set up
background

Set up
observations

and error

Set up
background

error

Minimize cost function Compute
analysis

Calculate
diagnostics Clean up

Diagnostics

Namelist

Read
namelist

Formulate
analysis

Outer loop

xb B

Calculate
y − H (x)

xa

y, R

Read namelist

• Read user-specified options from namelist.input

• Set default values for options not specified in the namelist

• Perform consistency checks between namelist options

Calling order:
da_wrfvar_main ==> call da_wrfvar_init1, da_wrfvar_init2 ==> call initial_config

Calling subroutines:
da_wrfvar_main.f90 ==> da_wrfvar_init1.inc, da_wrfvar_init2.inc ==> module_configure.F

Set up framework

Set up
background

Set up
observations

and error

Set up
background

error

Minimize cost function Compute
analysis

Calculate
diagnostics Clean up

Diagnostics

Formulate
analysis

Outer loop

Namelist

Set up
framework

Read
namelist

xb B

Calculate
y − H (x)

xa

y, R

Set up framework

• Utilize WRF Software Framework distributed memory
capability to allocate and configure the domain

• Allocate needed memory, initializes domain and tile
dimensions, etc.

• Create output files

Calling order:
da_wrfvar_main ==> call da_wrfvar_init2 ==> call alloc_and_configure_domain
da_wrfvar_main ==> call da_wrfvar_run.inc ==> call da_wrfvar_interface ==> call da_solve ==> call da_solve_init

Calling subroutines:
da_wrfvar_main.f90 ==> da_wrfvar_init2.inc ==> module_domain.F
da_wrfvar_main.f90 ==> da_wrfvar_run.inc ==> da_wrfvar_interface.inc ==> da_solve.inc ==> da_solve_init.inc

Set up background

Set up
observations

and error

Set up
background

error

Minimize cost function Compute
analysis

Calculate
diagnostics Clean up

Diagnostics

Formulate
analysis

Outer loop

Read
namelist

xb

Set up
background

Set up
framework

Namelist B

Calculate
y − H (x)

xa

y, R

Set up background

• Read the first-guess file

• Extract fields used by WRFDA

• Create background FORTRAN 90 derived data type xb, etc.

Calling order:
da_wrfvar_main ==> call da_wrfvar_init2 ==> call da_med_initialdata_input
da_wrfvar_main ==> call da_wrfvar_run ==> call da_wrfvar_interface ==> call da_solve ==>call da_setup_firstguess

Calling subroutines:
da_wrfvar_main.f90 ==> da_wrfvar_init2.inc ==> da_med_initialdata_input.inc
da_wrfvar_main.f90 ==> da_wrfvar_run.inc ==> da_wrfvar_interface.inc ==> da_solve.inc ==>da_setup_firstguess.inc

Set up observations and error

Set up
background

error

Minimize cost function Compute
analysis

Calculate
diagnostics Clean up

Diagnostics

Formulate
analysis

Outer loop

Read
namelist

Set up
framework

Namelist y, R

Set up
observations

and error

Set up
background

xb B

Calculate
y − H (x)

xa

Set up observations and error

• Read in observations

• Assign observational error

• Create observation FORTRAN 90 derived data type ob
• Domain and time check

Calling order:
da_wrfvar_main ==> call da_wrfvar_run ==> call da_wrfvar_interface ==> call da_solve ==> call da_setup_obs_structures

Calling subroutines:
da_wrfvar_main.f90 ==> da_wrfvar_run.inc ==> da_wrfvar_interface.inc ==> da_solve.inc ==>da_setup_obs_structures.inc

Set up background error

Minimize cost function Compute
analysis

Calculate
diagnostics Clean up

Diagnostics

Formulate
analysis

Outer loop

Read
namelist

Set up
framework

Namelist

Set up
background

B

Set up
background

error

Set up
observations

and error

xb

Calculate
y − H (x)

xa

y, R

Set up background error

• Reads in background error statistics from be.dat

• Extracts necessary quantities: eigenvectors, eigenvalues,
lengthscales, regression coefficients, etc.

• Creates background error FORTRAN 90 derived data type be
• Reference :Online BE Documents

Calling order:
da_wrfvar_main ==> call da_wrfvar_run ==> call da_wrfvar_interface ==> call da_solve ==>call da_setup_background_errors

Calling subroutines:
da_wrfvar_main.f90 ==> da_wrfvar_run.inc ==> da_wrfvar_interface.inc ==> da_solve.inc ==>da_setup_background_errors.inc

Calculate y − H (x)

Minimize cost function Compute
analysis

Calculate
diagnostics Clean up

Diagnostics

Formulate
analysis

Outer loop

Read
namelist

Set up
framework

Namelist

Set up
background

Set up
observations

and error

Set up
background

error

Calculate
y − H (x)

xb B

xa

y, R

Calculate y − H (x) (Innovation)

• Calculate model equivalent of observations through
interpolation and variable transformations

• Compute observation minus first guess (y − H (x)) value

• Create innovation vector FORTRAN 90 derived data type iv

Calling order:
da_wrfvar_main ==> call da_wrfvar_run ==> call da_wrfvar_interface ==>
 call da_solve ==>call da_get_innov_vector, da_allocate_y

Calling subroutines:
da_wrfvar_main.f90 ==> da_wrfvar_run.inc ==> da_wrfvar_interface.inc ==>
 da_solve.inc ==>da_get_innov_vector.inc, da_allocate_y.inc

Minimize cost function

Compute
analysis

Calculate
diagnostics Clean up

Diagnostics

Formulate
analysis

Outer loop

Read
namelist

Set up
framework

Namelist

Set up
background

Set up
observations

and error

Set up
background

error

Minimize cost function

xb B

Calculate
y − H (x)

xa

y, R

Minimize cost function

• Use conjugate gradient method
– Initializes analysis increments to zero
– Computes cost function (if desired)
– Computes gradient of cost function
– Uses gradient of the cost function to calculate new value of

analysis control variable
• Increment this process until specified minimization is achieved

 Calling order:
da_wrfvar_main ==> call da_wrfvar_run ==> call da_wrfvar_interface ==> call da_solve ==>call da_minimise_cg

Calling subroutines:
da_wrfvar_main.f90 ==> da_wrfvar_run.inc ==> da_wrfvar_interface.inc ==> da_solve.inc ==>da_minimise_cg.inc

Further reading: Shewchuk, Jonathan Richard, 1994. An Introduction to the Conjugate Gradient Method Without the Agonizing Pain
 (http://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf)

Compute analysis

Calculate
diagnostics Clean up

Diagnostics

Formulate
analysis

Outer loop

Read
namelist

Set up
framework

Namelist

Set up
background

Set up
observations

and error

Set up
background

error

Compute
analysis Minimize cost function

xb B

Calculate
y − H (x)

xa

y, R

Compute analysis

• Convert control variables to model space analysis increments

• Calculate analysis = first-guess + analysis increment

• Perform consistency checks (e.g., remove negative humidity)

Calling order:
da_wrfvar_main ==> call da_wrfvar_run ==> call da_wrfvar_interface ==> call da_solve ==>call da_transfer_xatoanalysis

Calling subroutines:
da_wrfvar_main.f90 ==> da_wrfvar_run.inc ==> da_wrfvar_interface.inc ==> da_solve.inc ==>da_transfer_xatoanalysis.inc

Calculate diagnostics

Clean up Formulate
analysis

Outer loop

Read
namelist

Set up
framework

Namelist

Set up
background

Set up
observations

and error

Set up
background

error

Minimize cost function Compute
analysis

Calculate
diagnostics

Diagnostics

xb B

Calculate
y − H (x)

xa

y, R

Calculate diagnostics

• Output y − H(xb), y − H(xa) statistics for all observation types
and variables

• Compute xa − xb (analysis increment) statistics for all model
variables and levels

• Statistics include minimum, maximum (and their locations),
mean and standard deviation.

Calling order:
da_wrfvar_main ==> call da_wrfvar_run ==> call da_wrfvar_interface ==> call da_solve ==>call da_transfer_xatoanalysis

Calling subroutines:
da_wrfvar_main.f90 ==> da_wrfvar_run.inc ==> da_wrfvar_interface.inc ==> da_solve.inc ==>da_transfer_xatoanalysis.inc

Outer loop

Clean up Formulate
analysis

Read
namelist

Set up
framework

Namelist

Set up
background

Set up
observations

and error

Set up
background

error

Calculate
diagnostics

Calculate
y − H (x) Minimize cost function Compute

analysis

Outer loop

Diagnostics

xb B

xa

y, R

Outer loop

• An outer loop is a method of iterative assimilation to maximize
contributions from observations non-linearly related to the
control variables (e.g., GPS refractivity, Doppler radial velocity)
– After the previous steps, the analysis xa is used as the new

first guess
– The cost function minimization and diagnostic steps are

repeated
– This can be repeated up to ten times

 Calling order:
da_wrfvar_main ==> call da_wrfvar_run ==> call da_wrfvar_interface ==> call da_solve

Calling subroutines:
da_wrfvar_main.f90 ==> da_wrfvar_run.inc ==> da_wrfvar_interface.inc ==> da_solve.inc

Further reading: Rizvi et al., 2008 (http://www.mmm.ucar.edu/wrf/users/workshops/WS2008/abstracts/P5-03.pdf)

Write analysis

Clean up

Diagnostics

Outer loop

Read
namelist

Set up
framework

Namelist

Set up
background

Set up
observations

and error

Set up
background

error

Minimize cost function Compute
analysis

Calculate
diagnostics

Formulate
analysis

xa

xb B

Calculate
y − H (x)

y, R

Write analysis

• Write analysis file in native WRF format.

Calling order:
da_wrfvar_main ==> call da_wrfvar_run ==> call da_wrfvar_interface ==> call da_solve ==>call da_transfer_xatoanalysis

Calling subroutines:
da_wrfvar_main.f90 ==> da_wrfvar_run.inc ==> da_wrfvar_interface.inc ==> da_solve.inc ==>da_transfer_xatoanalysis.inc

Clean up

Diagnostics

Outer loop

Read
namelist

Set up
framework

Namelist

Set up
background

Set up
observations

and error

Set up
background

error

Minimize cost function Compute
analysis

Calculate
diagnostics

Formulate
analysis Clean up

xb B

Calculate
y − H (x)

xa

y, R

Clean up

• Deallocate dynamically-allocated arrays, structures, etc.

• Timing information

• Clean end to WRFDA

Calling order:
da_wrfvar_main ==> call da_wrfvar_run ==> call da_wrfvar_interface ==> call da_solve
da_wrfvar_main ==> call da_wrfvar_finalize

Calling subroutines:
da_wrfvar_main.f90 ==> da_wrfvar_run.inc ==> da_wrfvar_interface.inc ==> da_solve.inc
da_wrfvar_main.f90 ==> da_wrfvar_finalize.inc

Output
files

WRFDA broken down by process

Namelist xb B

Diagnostics

Read
namelist

Set up
framework

Set up
background

Set up
observations

and error

Set up
background

error

Calculate
y − H (x) Minimize cost function Compute

analysis

Calculate
diagnostics Clean up Formulate

analysis

Outer loop

xa

y, R

Output files: Diagnostics

• File names: grad_fn, jo, qcstat_conv*, statistics, etc.

• There will be a number of diagnostics files output by WRFDA
– Many will end in .0000, .0001, etc.; these are diagnostics

specific to each processor used
– Many will also contain a _01; these files will appear for

each outer loop as _02, _03, etc.
• More or fewer output files can be specified by certain namelist

options

Output files: xa (analysis)

• File name: wrfvar_output

• This is the model output in WRF native format. This file can be
used directly for research purposes, or used to initialize a WRF
forecast

Cycling mode

• Because WRFDA takes WRF forecast files as input, the
system can naturally be run in cycling mode

• WRFDA initializes a WRF forecast, the output of which is fed
back into WRFDA to initialize another WRF forecast

• Requires boundary condition updating

Cycling mode

Further reading: User’s Guide, Chapter 6, section “Updating WRF Boundary Conditions”

WRFDA System – Outline

• Introduction

• WRFDA Software Overview

• Computing Overview

WRFDA Parallelism

• WRFDA can be run serially or as a parallel job

• WRFDA uses domain decomposition to divide total amount
of work over parallel processes

• The decomposition of the application over processes has two
levels:
– The domain is first broken up into rectangular pieces that

are assigned to MPI (distributed memory) processes.
These pieces are called patches

– The patches may be further subdivided into smaller
rectangular pieces that are called tiles, and these are
assigned to shared-memory threads within the process.

APPLICATION

HARDWARE

SYSTEM

Model domains are decomposed for parallelism on two-levels

Patch: section of model domain allocated to a distributed memory node,
this is the scope of a minimization layer solver.

Tile: section of a patch allocated to a shared-memory processor within a
node; this is also the scope of a observation layer subroutine.

Distributed memory parallelism is over patches; shared memory parallelism
is over tiles within patches

• Single version of code for efficient execution on:

– Distributed-memory
– Shared-memory (SMP)
– Clusters of SMPs
– Vector and microprocessors

Parallelism in WRFDA: Multi-level Decomposition

Logical
domain

1 Patch, divided
into multiple tiles

Inter-processor
communication

APPLICATION

HARDWARE

SYSTEM

Distributed Memory Communications

Communication is required between patches when a
horizontal index is incremented or decremented on the right-
hand-side of an assignment.

On a patch boundary, the index may refer to a value that is
on a different patch.

Following is an example code fragment that requires
communication between patches

Note the tell-tale +1 and –1 expressions in indices for rr, H1,
and H2 arrays on right-hand side of assignment.

These are horizontal data dependencies because the
indexed operands may lie in the patch of a neighboring
processor. That neighbor’s updates to that element of the
array won’t be seen on this processor.

When
Needed?

Why?

Signs in
code

 (da_transfer_xatowrf.inc)

subroutine da_transfer_xatowrf(grid)
. . .
 do k=kts,kte
 do j=jts,jte+1
 do i=its,ite+1
 u_cgrid(i,j,k)=0.5*(grid%xa%u(i-1,j ,k)+grid%xa%u(i,j,k))
 v_cgrid(i,j,k)=0.5*(grid%xa%v(i ,j-1,k)+grid%xa%v(i,j,k))
 end do
 end do
 end do
 . . .

Distributed Memory Communications

 (da_transfer_xatowrf.inc)

subroutine da_transfer_xatowrf(grid)
. . .
 do k=kts,kte
 do j=jts,jte+1
 do i=its,ite+1
 u_cgrid(i,j,k)=0.5*(grid%xa%u(i-1,j ,k)+grid%xa%u(i,j,k))
 v_cgrid(i,j,k)=0.5*(grid%xa%v(i ,j-1,k)+grid%xa%v(i,j,k))
 end do
 end do
 end do
 . . .

Distributed Memory Communications

• Halo updates

Distributed Memory (MPI)
Communications

memory on one processor memory on neighboring processor

*
+ *
*

* *

APPLICATION

HARDWARE

SYSTEM

Grid Representation in Arrays

• Increasing indices in WRFDA arrays run
– West to East (X, or I-dimension)
– South to North (Y, or J-dimension)
– Bottom to Top (Z, or K-dimension)

• Storage order in WRFDA is IJK , but for WRF, it is IKJ (ARW)
and IJK (NMM)

• Output data has grid ordering independent of the ordering
inside the WRFDA model

Grid Representation in Arrays

• The extent of the logical or domain dimensions is always the
"staggered" grid dimension. That is, from the point of view of a
non-staggered dimension (also referred to as the ARW “mass
points”), there is always an extra cell on the end of the domain
dimension

• In WRFDA, the minimization is on A-grid (non-staggered grid).
The wind components will be interpolated from A-grid to C-grid
(staggered grid) before they are output

WRFDA I/O
• Streams: pathways into and out of model

– Input
• fg is the name of the input
• wrfvar_output is the name of output

– Boundary
• Only needed for 4DVAR.

Summary

• WRFDA is designed to be an easy-to-use data assimilation
system for use with the WRF model

• WRFDA is designed within the WRF Software Framework for
rapid development and ease of modification

• WRFDA can be run in parallel for quick assimilation of large
amounts of data

Appendix – WRFDA Resources

• WRFDA users page
– http://www.mmm.ucar.edu/wrf/users/wrfda
– Download WRFDA source code, test data, related

packages and documentation
– Lists WRFDA news and developments

• Online documentation
– http://www.mmm.ucar.edu/wrf/users/docs/user_guide_V3/u

sers_guide_chap6.htm
– Chapter 6 of the WRF Users’ Guide; documents installation

of WRFDA and running of various WRFDA methods
• WRFDA user services and help desk

– wrfhelp@ucar.edu

http://www.mmm.ucar.edu/wrf/users/wrfda
http://www.mmm.ucar.edu/wrf/users/docs/user_guide_V3/users_guide_chap6.htm
http://www.mmm.ucar.edu/wrf/users/docs/user_guide_V3/users_guide_chap6.htm
mailto:rfhelp@ucar.edu

Appendix – Derived Data Structures
• Driver layer

– All data for a domain is an object, a domain derived data type (DDT)
– The domain DDT is dynamically allocated/deallocated
– Only one DDT is allowed in WRFDA; it is head_grid, defined in

frame/module_domain.F
– WRFDA doesn’t support nested domains.

head_grid 1
• Every Registry defined state, I1,

and namelist variable is
contained inside the DDT
(locally known as a grid of type
domain), where each node in
the tree represents a separate
and complete 3D model
domain/nest.

Appendix – Derived Data Structures

• cvt
– Real type array to store the control variables
– It is an all-ZERO array during the first outer loop

and will be updated at the end of each outer loop

• xhat
– Real type array to store the control variables
– It stores the control variables for each inner loop.

• be

– It is used to store the background error
covariance.

Appendix – Derived Data Structures

• iv
– Stores the innovations for each observational type

• ob
– Stores the observations

• re
– Store the residual

y

y − H(x + ∆x)

y − Hx

• Primarily written in Fortran and C

• Part of the WRF Software Framework
– Hierarchical organization
– Multiple functions
– Plug observation type interface
– Abstract interfaces (APIs) to external

packages
– Performance-portable

3DVAR

minimization Interfaces

Plug-compatible physics
Plug-compatible physics

Plug-compatible physics
Plug-compatible physics Plug-compatible

Observation interface

4DVAR

Top-level Control,
Memory Management,

Parallelism, External APIs

M
in

im
iz

at
io

n
dr

iv
er

ob

se
rv

at
io

ns

FSO

Appendix – WRFDA structure

• Processor:
– A device that reads and executes instructions in

sequence from a memory device, producing results that
are written back to a memory device

• Node: One memory device connected to one or more
processors.
– Multiple processors in a node are said to share-memory

and this is “shared memory parallelism”
– They can work together because they can see each

other’s memory
– The latency and bandwidth to memory affect

performance

APPLICATION

HARDWARE

SYSTEM

Appendix – Parallel Computing
Terms (Hardware)

• Cluster: Multiple nodes connected by a network
– The processors attached to the memory in one node can not

see the memory for processors on another node
– For processors on different nodes to work together they must

send messages between the nodes. This is “distributed
memory parallelism”

• Network:
– Devices and wires for sending messages between nodes
– Bandwidth – a measure of the number of bytes that can be

moved in a second
– Latency – the amount of time it takes before the first byte of a

message arrives at its destination

APPLICATION

HARDWARE

SYSTEM

Appendix – Parallel Computing
Terms (Hardware)

• Process:
– A set of instructions to be executed on a processor
– Enough state information to allow process execution to

stop on a processor and be picked up again later, possibly
by another processor

• Processes may be lightweight or heavyweight
– Lightweight processes, e.g. shared-memory threads,

store very little state; just enough to stop and then start the
process

– Heavyweight processes, e.g. UNIX processes, store a lot
more (basically the memory image of the job)

APPLICATION

HARDWARE

SYSTEM

Appendix – Parallel Computing
Terms (Software)

Appendix – Parallel Computing
Terms (Software)

• Every job has at least one heavy-weight process.
– A job with more than one heavy-weight process is a distributed-memory

parallel job
– Even on the same node, heavyweight processes do not share memory

• Within a heavyweight process you may have some number of lightweight
processes, called threads.
– Threads are shared-memory parallel; only threads in the same memory

space can work together.
– A thread never exists by itself; it is always inside a heavy-weight

process.
• Heavy-weight processes are the vehicles for distributed memory parallelism

• Threads (light-weight processes) are the vehicles for shared-memory
parallelism

APPLICATION

HARDWARE

SYSTEM

• Since the process model has two levels (heavy-
weight and light-weight = MPI and OpenMP), the decomposition of the
application over processes has two levels:
– The domain is first broken up into rectangular pieces that are

assigned to heavy-weight processes. These pieces are called
patches

– The patches may be further subdivided into smaller rectangular
pieces that are called tiles, and these are assigned to threads within
the process.

APPLICATION

HARDWARE

SYSTEM

Appendix – Parallel Computing in
WRFDA context

Appendix –
Parallel Computing APIs

• Message Passing Interface – MPI, referred to as the
communication layer

• MPI is used to start up and pass messages between multiple
heavyweight processes
– The mpirun command controls the number of processes

and how they are mapped onto nodes of the parallel
machine

– Calls to MPI routines send and receive messages and
control other interactions between processes

– http://www.mcs.anl.gov/mpi

APPLICATION

HARDWARE

SYSTEM

http://www.mcs.anl.gov/mpi

Appendix –
Parallel Computing APIs

• OpenMP is used to start up and control threads
within each process
– Directives specify which parts of the program are multi-

threaded
– OpenMP environment variables determine the number of

threads in each process
– http://www.openmp.org

• OpenMP is usually activated via a compiler option

• MPI is usually activated via the compiler name

• The number of processes (number of MPI processes times the
number of threads in each process) usually corresponds to the
number of processors

• In general, WRFDA should not be run with shared memory!

APPLICATION

HARDWARE

SYSTEM

http://www.openmp.org/

• If the machine consists of 4 nodes, each with 4 processors, how many
different ways can you run a job to use all 16 processors?

– 4 MPI processes, each with 4 threads

setenv OMP_NUM_THREADS 4
mpirun –np 4 da_wrfvar.exe

– 8 MPI processes, each with 2 threads

setenv OMP_NUM_THREADS 2
mpirun –np 8 da_wrfvar.exe

– 16 MPI processes, each with 1 thread

setenv OMP_NUM_THREADS 1
mpirun –np 16 da_wrfvar.exe

4 threads

1 MPI

4 threads

1 MPI

4 threads

1 MPI

4 threads

1 MPI

Appendix – MPI/OpenMP

• If the machine consists of 4 nodes, each with 4 processors, how many
different ways can you run a job to use all 16 processors?

– 4 MPI processes, each with 4 threads

setenv OMP_NUM_THREADS 4
mpirun –np 4 da_wrfvar.exe

– 8 MPI processes, each with 2 threads

setenv OMP_NUM_THREADS 2
mpirun –np 8 da_wrfvar.exe

– 16 MPI processes, each with 1 thread

setenv OMP_NUM_THREADS 1
mpirun –np 16 da_wrfvar.exe

2 threads
2 threads

2 MPI

2 threads
2 threads

2 MPI

2 threads
2 threads

2 MPI

2 threads
2 threads

2 MPI

Appendix – MPI/OpenMP

• If the machine consists of 4 nodes, each with 4 processors, how many
different ways can you run a job to use all 16 processors?

– 4 MPI processes, each with 4 threads

setenv OMP_NUM_THREADS 4
mpirun –np 4 da_wrfvar.exe

– 8 MPI processes, each with 2 threads

setenv OMP_NUM_THREADS 2
mpirun –np 8 da_wrfvar.exe

– 16 MPI processes, each with 1 thread

setenv OMP_NUM_THREADS 1
mpirun –np 16 da_wrfvar.exe

4 MPI

4 MPI 4 MPI

4 MPI

Appendix – MPI/OpenMP

• Note, since there are 4 nodes, we can never have fewer than 4
MPI processes because nodes do not share memory

• What happens on this same machine for the following?

setenv OMP_NUM_THREADS 8
mpirun –np 32 da_wrfvar.exe

Appendix – MPI/OpenMP

• Halo updates
• Parallel transposes

Distributed Memory (MPI)
Communications

APPLICATION

HARDWARE

SYSTEM

Distributed Memory (MPI)
Communications

all y on
patch

all z on
patch

all x on
patch

• Halo updates
• Parallel transposes

APPLICATION

HARDWARE

SYSTEM

Review – Computing Overview

APPLICATION
(WRF)

HARDWARE
(Processors, Memories, Wires)

SYSTEM
(UNIX, MPI, OpenMP)

Domain contains Patches contain Tiles

Job contains Processes contain Threads

Cluster contains Nodes contain Processors

Distributed
Memory
Parallel

Shared
Memory
Parallel

Main WRFDA Program (driver):

WRFDA Subroutines
(mediation layer)

OBSERVATION
TYPES

da_airep
da_airsr
da_bogus
da_buoy
da_geoamv
da_gpspw
da_gpsref
da_metar
da_mtgirs
da_pilot
da_polaramv
da_profiler

da_4dvar
da_control
da_etkf
da_define_structures
da_dynamics
da_grid_definitions
da_interpolation
da_minimisation
da_physics
da_setup_structures
da_varbc
da_vtox_transforms

Appendix – WRFDA/var/da
Directory structure

da_pseudo
da_qscat
da_radar
da_radiance
da_rain
da_satem
da_ships
da_sound
da_ssmi
da_synop
da_tamdar

da_main

Appendix – WRFDA History

• Developed from MM5 3DVar beginning around 2002, first
version (2.0) released December 2003

• Developed and supported by WRFDA group of MMM, part of
NESL

• Requirements emphasize flexibility over a range of platforms,
applications, users, performance

• Current release WRFDA v3.5 (April 2013)

• Shares the WRF Software Framework

Appendix – WRFDA and J

•

Appendix – WRFDA and J

•

Appendix – WRFDA and J

•

Appendix – WRFDA and J

•

	WRF Data Assimilation System
	WRFDA System – Outline
	Introduction – What is WRFDA?
	Slide Number 4
	Slide Number 5
	WRFDA System – Outline
	Slide Number 7
	WRFDA Directory structure
	WRFDA/var Directory structure
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Call Structure Superimposed on Architecture
	Slide Number 16
	Slide Number 17
	Input files: Namelist
	Input files: xb (background)
	Input files: y (observations)�	 and R (observation errors)
	Input files: B (background error)
	Slide Number 22
	Slide Number 23
	Read namelist
	Slide Number 25
	Set up framework
	Slide Number 27
	Set up background
	Slide Number 29
	Set up observations and error
	Slide Number 31
	Set up background error
	Slide Number 33
	Calculate y − H (x) (Innovation)
	Slide Number 35
	Minimize cost function
	Slide Number 37
	Compute analysis
	Slide Number 39
	Calculate diagnostics
	Slide Number 41
	Outer loop
	Slide Number 43
	Write analysis
	Slide Number 45
	Clean up
	Slide Number 47
	Output files: Diagnostics
	Output files: xa (analysis)
	Cycling mode
	Cycling mode
	WRFDA System – Outline
	WRFDA Parallelism
	Parallelism in WRFDA: Multi-level Decomposition
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Grid Representation in Arrays
	Grid Representation in Arrays
	WRFDA I/O
	Summary
	Appendix – WRFDA Resources
	Appendix – Derived Data Structures
	Appendix – Derived Data Structures
	Appendix – Derived Data Structures
	Appendix – WRFDA structure
	Slide Number 68
	Slide Number 69
	Slide Number 70
	Appendix – Parallel Computing Terms (Software)
	Appendix – Parallel Computing in WRFDA context
	Appendix – �Parallel Computing APIs
	Appendix – �Parallel Computing APIs
	Appendix – MPI/OpenMP
	Appendix – MPI/OpenMP
	Appendix – MPI/OpenMP
	Appendix – MPI/OpenMP
	Slide Number 79
	Slide Number 80
	Review – Computing Overview
	Appendix – WRFDA/var/da Directory structure
	Appendix – WRFDA History
	Appendix – WRFDA and J
	Appendix – WRFDA and J
	Appendix – WRFDA and J
	Appendix – WRFDA and J

