
WRF Data Assimilation System:
Software and Compilation

Michael Kavulich, Jr.

1

July 24–July 26, 2017
National Center for Atmospheric Research

Boulder, CO

WRFDA System – Outline

•  Introduction
•  Compiling the code
•  WRFDA software structure
•  Computing overview

2

Introduction – What is WRFDA?

•  A data assimilation system for the WRF Model (ARW core)
•  3D- and 4D-VAR, FGAT, Ensemble, and Hybrid methods

•  Designed to be flexible, portable and easily installed and modified
•  Open-source and public domain
•  Can be compiled on a variety of platforms
•  Part of the WRF Software Framework

•  Designed to handle a wide variety of data
•  Conventional observations
•  Radar velocity and reflectivity
•  Satellite (radiance and derived data)
•  Accumulated precipitation

3

Introduction – What does WRFDA do?

•  WRFDA takes a first guess of the atmospheric state,
and combines that information with model/
background error and observation information
through one of several assimilation methods and
background error options to produce a best guess of
the atmospheric state at the given time

4

WRFDA

4

Background
error data Observation files

First guess
(background)

Best guess
(analysis)

5

WRFDA in WRF Modeling System

WRF Model review

•  real.exe creates wrfinput_d* and wrfbdy_d01
•  wrfinput_d01 file contains the 3d-initial condition state for the

parent domain
•  wrfbdy_d01 contains the lateral boundary conditions for the

parent domain
•  For multiple domains, you will have wrfinput_d02,

wrfinput_d03, etc., which are the initial conditions for domain
2, domain 3, etc., respectively. Boundary conditions for these
files are taken from the parent domains

•  wrf.exe creates wrfout_d* files
•  wrfout_d##_YYYY_MM_DD:mm:ss contains one or more

3d forecast states for domain ## starting at the indicated date/
time 6

WRFDA in WRF Modeling System

•  WRFDA takes a single WRF file (either wrfinput* or
wrfout*) and creates a single output file
(wrfvar_output)
•  This wrfvar_output file is the updated “best guess” of the

atmospheric state after data assimilation
•  wrfvar_output is in the same format as wrfinput files, so can be

used to initialize a WRF forecast
•  WRFDA can only use wrfout files which have a single time

dimension (In WRF namelist: frames_per_outfile=1)

•  To perform data assimilation on multiple domains or
multiple times, you must run WRFDA multiple times
with the appropriate input files

7

Cycling mode

•  Because WRFDA can take WRF forecast files as input,
the system can naturally be run in cycling mode

•  Output from WRFDA is used to initialize a WRF
forecast, the output of which is fed back into WRFDA to
initialize another WRF forecast

•  Requires boundary condition updating

8

Blue: Supported by WRFDA team
9

WRFDA System – Outline

•  Introduction
•  Compiling the code
•  WRFDA software structure
•  Computing overview

10

Compiling – What is needed?

•  WRFDA has similar system requirements to WRF
•  Can be run on a wide variety of UNIX and Linux-based systems
•  Linux/Mac, desktops/laptops, clusters with UNIX-based OS

•  WRFDA computational requirements depend on your task
•  Running a small 3DVAR case may take less than 1GB of RAM
•  Large 4DVAR cases may require hundreds of GB

•  A supported C and Fortran compiler
•  ifort/icc
•  gfortran/gcc
•  pgf90/pgcc

•  Some versions of these compilers have known problems; see
http://www2.mmm.ucar.edu/wrf/users/wrfda/known-
problems.html#compilers

11

Compiling – What is needed?

•  Similar to WRF, there are required and optional libraries
•  netCDF C/fortran libraries are required, and must be

downloaded and built by the user
•  http://www.unidata.ucar.edu/downloads/netcdf/index.jsp

•  MPI libraries (e.g. MPICH) are required for running WRFDA
in parallel

•  BUFR libraries are required for reading PREPBUFR or
radiance BUFR files, but they are included in WRFDA and built
automatically

12

Compiling – What is needed?

•  Similar to WRF, there are required and optional libraries
•  For radiance assimilation, a radiative transfer model is needed:
•  CRTM, the Community Radiative Transfer Model, is included with the WRFDA

source code and built automatically
•  RTTOV is provided by EUMETSAT/NWP SAF, and must be downloaded and

built separately

•  WRFDA does not yet support the most recent RTTOV release (v12.1),
so you must download version 11 (11.1, 11.2, or 11.3)

•  https://nwpsaf.eu/site/software/rttov/

•  AMSR2 radiance files in HDF5 format
•  HDF5 libraries are maintained by The HDF5 Group, and must be

downloaded and built separately
•  https://support.hdfgroup.org/HDF5/

13

Compiling – Getting the source code

•  Visit the WRFDA download website:
•  http://www2.mmm.ucar.edu/wrf/users/wrfda/download/get_source.html

•  Click “New Users” and fill out the registration form, (registration
is free), or

•  Click “Returning users” and enter your email if you have
previously registered to download a WRF product

•  Download the latest tar file (Version 3.9)
•  Unzip (gunzip WRFDA_V3.9.tar.gz) and un-tar (tar -xvf

WRFDA_V3.9.tar) the code package
•  You should see a directory named “WRFDA”; this is the WRFDA

source code

14

WRFDA Directory structure

arch
clean
compile
configure
dyn_em
dyn_exp
external
frame
inc
main
Makefile
phys
README.DA
README.io_config
Registry
run
share
test
tools
var

build
scripts

WRFDA source
code directory

Contains registry.var
Legend:
Blue – directory
Green – script file
Gray – other text file

README file with information about WRFDA

15

WRFDA/var Directory structure

build
convertor
da
external
gen_be
graphics
Makefile
obsproc
README.basics
README.namelist
README.radiance
run
scripts
test

More README files with
useful information

Legend:
Blue – directory
Green – script file
Gray – other text file

Executables built here

WRFDA main source code contained here
Source code for external libraries (CRTM, BUFR, etc.)
GEN_BE source code

OBSPROC source code

Useful runtime files (mostly for radiance)

Data for tutorial cases

16

Main WRFDA Program (driver):

WRFDA Subroutines
(mediation layer) Observation Types

da_airep
da_airsr
da_bogus
da_buoy
da_geoamv
da_gpspw
da_gpsref
da_metar
da_mtgirs
da_pilot
da_polaramv
da_profiler

da_4dvar
da_control
da_etkf
da_define_structures
da_dynamics
da_grid_definitions
da_interpolation
da_minimisation
da_physics
da_setup_structures
da_varbc
da_vtox_transforms

WRFDA/var/da Directory structure

da_pseudo
da_qscat
da_radar
da_radiance
da_rain
da_satem
da_ships
da_sound
da_ssmi
da_synop
da_tamdar

da_main

17

Compiling – Preparing the environment

•  As mentioned before, some libraries are required for WRFDA,
and some are optional depending what you are using WRFDA for
•  netCDF is required; you should set an environment variable to specify

where the netCDF libraries are built on your system:
•  setenv NETCDF full_path_for_NETCDF

•  If you plan on doing radiance assimilation, you will need CRTM or
RTTOV. WRFDA can be built with either or both
•  The CRTM source code is included in the WRFDA package, and will be

built automatically
•  To use RTTOV, set an environment variable specifying where RTTOV is

built on your system:
•  setenv RTTOV full_path_for_RTTOV

18

Compiling – Preparing the environment

•  If you plan on assimilating AMSR2 data, you will need to link to the
HDF5 libraries
•  Set an environment variable specifying where HDF5 is built on your system:
•  setenv HDF5 full_path_for_HDF5

•  To build the code faster, if your computer has the gnu make utility, you
can set the environment variable J to build the code in parallel
•  setenv J “-j 4” (will build on 4 processors)
•  Note that this is different from compiling the code to run in parallel

19

Compiling – Building the WRFDA code

•  Two scripts must be run to build the code:
•  configure asks for some information about your

machine and how you want to build the code, and
generates a configure.wrf file

•  ./configure wrfda

•  Select the option that is best for your purposes

> ./configure wrfda
checking for perl5... no
checking for perl... found /usr/bin/perl (perl)
Will use NETCDF in dir: /usr/local/netcdf-3.6.3-gfortran
Will use HDF5 in dir: /usr/local/hdf5-1.8.15-gcc
PHDF5 not set in environment. Will configure WRF for use without.
Will use 'time' to report timing information
$JASPERLIB or $JASPERINC not found in environment, configuring to build without grib2 I/O...
--
Please select from among the following Linux x86_64 options:

 1. (serial) 2. (smpar) 3. (dmpar) 4. (dm+sm) PGI (pgf90/gcc)
 5. (serial) 6. (smpar) 7. (dmpar) 8. (dm+sm) PGI (pgf90/pgcc): SGI MPT
 9. (serial) 10. (smpar) 11. (dmpar) 12. (dm+sm) PGI (pgf90/gcc): PGI accelerator
 13. (serial) 14. (smpar) 15. (dmpar) 16. (dm+sm) INTEL (ifort/icc)
 20

Compiling – Building the WRFDA code

•  Two scripts must be run to build the code:
•  compile compiles all the code for the settings you

specified
 ./compile all_wrfvar >& compile.wrfda.log

•  Depending on your machine and what options you have
selected, compilation can take less than 5 minutes up to
an hour. For example, gfortran usually compiles
WRFDA quite quickly, while intel compilers typically
take longer to build (but the executables may run faster)

21

Compiling – review compiled code

•  When the compilation script is completed, you should see the
message “build completed:” followed by the date and time.

•  The script does not automatically check to make sure
all executables were successfully built; you will need to
check manually

•  There should be 44 executables built all together: 43 in the
WRFDA/var/build directory, and WRFDA/var/obsproc/
obsproc.exe

•  In all likelihood, you will not use most of these directly: the
majority of them are called by scripts for various tools such as
GEN_BE and diagnostic packages

22

Compiling – review executables

•  These are the executables you will most likely be using:
•  da_wrfvar.exe
•  The main WRFDA executable: this program will perform the

actual data assimilation and output a WRF-formatted
wrfvar_output file

•  obsproc.exe
•  The executable for OBSPROC, the observation pre-processor

for text-based observation formats

•  da_update_bc.exe
•  The executable for UPDATE_BC; used for updating boundary

conditions after assimilation and during cycling runs

23

WRFDA System – Outline

•  Introduction
•  Compiling the code
•  WRFDA software structure

•  Computing overview

24

WRFDA Software – Architecture

•  Hierarchical software architecture
•  Insulate scientists' code from parallelism and other

architecture/implementation-specific details
•  Well-defined interfaces between layers, and external packages

for communications, I/O.

DA obs_type-callable
 Subroutine

Registry.wrfvar

25

WRFDA Software – Architecture

•  Registry: an “Active” data dictionary
•  Tabular listing of model state and attributes
•  Large sections of interface code generated automatically
•  Scientists manipulate model state simply by modifying Registry, without further knowledge of

code mechanics
•  registry.var is the main dictionary for WRFDA
•  registry.var is combined at compile time with Registry.EM_COMMON.var and others to

produce Registry.wrfvar, which contains all of the registry definitions used by WRFDA

Registry.wrfvar

DA obs_type-callable
 Subroutine

26

registry.var
Variable

type
Variable

name
Namelist

name
Default
value

Variable
size

rconfig integer rttov_emis_atlas_ir namelist,wrfvar14 1 0 - "rttov_emis_atlas_ir" "" "“
rconfig integer rttov_emis_atlas_mw namelist,wrfvar14 1 0 - "rttov_emis_atlas_mw" "" "“
rconfig integer rtminit_print namelist,wrfvar14 1 1 - "rtminit_print" "" "“
rconfig integer rtminit_nsensor namelist,wrfvar14 1 1 - "rtminit_nsensor" "" "“
rconfig integer rtminit_platform namelist,wrfvar14 max_instruments -1 - "rtminit_platform" "" "“
rconfig integer rtminit_satid namelist,wrfvar14 max_instruments -1.0 - "rtminit_satid" "" "“
rconfig integer rtminit_sensor namelist,wrfvar14 max_instruments -1.0 - "rtminit_sensor" "" "“
rconfig integer rad_monitoring namelist,wrfvar14 max_instruments 0 - "rad_monitoring" "" "“
rconfig real thinning_mesh namelist,wrfvar14 max_instruments 60.0 - "thinning_mesh" "" "“
rconfig logical thinning namelist,wrfvar14 1 .true. - "thinning " "" "“
rconfig logical read_biascoef namelist,wrfvar14 1 .false. - "read_biascoef" "" "“
rconfig logical biascorr namelist,wrfvar14 1 .false. - "biascorr" "" "“
rconfig logical biasprep namelist,wrfvar14 1 .false. - "biasprep" "" "“
rconfig logical rttov_scatt namelist,wrfvar14 1 .false. - "rttov_scatt" "" "“
rconfig logical write_profile namelist,wrfvar14 1 .false. - "write_profile" "" "“
rconfig logical write_jacobian namelist,wrfvar14 1 .false. - "write_jacobian" "" "“
rconfig logical qc_rad namelist,wrfvar14 1 .true. - "qc_rad" "" "“
rconfig logical write_iv_rad_ascii namelist,wrfvar14 1 .false. - "write_iv_rad_ascii" "" "“
rconfig logical write_oa_rad_ascii namelist,wrfvar14 1 .false. - "write_oa_rad_ascii" "" "“
rconfig logical write_filtered_rad namelist,wrfvar14 1 .false. - "write_filtered_rad" "" "“
rconfig logical use_error_factor_rad namelist,wrfvar14 1 .false. - "use_error_factor_rad" "" "“
rconfig logical use_landem namelist,wrfvar14 1 .false. - "use_landem" "" "“
rconfig logical use_antcorr namelist,wrfvar14 max_instruments .false. - "use_antcorr" "" "“
rconfig logical use_mspps_emis namelist,wrfvar14 max_instruments .false. - "use_mspps_emis" "" "“
rconfig logical use_mspps_ts namelist,wrfvar14 max_instruments .false. - "use_mspps_ts" "" "“

WRFDA Software – Architecture

27

WRFDA Software – Architecture

•  Driver Layer
•  Domains: Allocates, stores, decomposes, represents abstractly

as single data objects

Registry

DA obs_type-callable
 Subroutine

28

WRFDA Software – Architecture

•  Minimization/Solver Layer
•  Minimization/Solver routine, choose the function based on the

namelist variable, 3DVAR, 4DVAR, FSO or Verification, and
choose the minimization algorithm.

Registry

DA obs_type-callable
 Subroutine

29

WRFDA Software – Architecture

•  Observation Layer
•  Observation interfaces: contains the gradient and cost

function calculation subroutines for each type of observations.

Registry

DA obs_type-callable
 Subroutine

30

Call Structure Superimposed on Architecture

da_wrfvar_main (var/da/da_main/da_wrfvar_main.f90)

da_wrfvar_run (da_main)

KFCPS (phys/module_ra_kf.F
KFCPS (phys/module_ra_kf.F
KFCPS (phys/module_ra_kf.F
KFCPS (phys/module_ra_kf.F
KFCPS (phys/module_ra_kf.F synop (da_synop/da-synop.f90)
sound (da_sound/da_sound.f90)

da_wrfvar_interface -> da_solve (da_main)

da_sound.f90(da_sound)

da_calculate_j -> da_jo_and_grady (da_minimization)

da_minimise_cg (da_minimisation)

31

WRFDA System – Outline

•  Introduction
•  Compiling the code
•  WRFDA software overview
•  Computing overview

32

WRFDA Parallelism

•  WRFDA can be run serially or as a parallel job
•  WRFDA uses domain decomposition to divide total amount of

work over parallel processes
•  The decomposition of the application over processes has two

levels:
•  The domain is broken up into rectangular pieces that are assigned to MPI

(distributed memory) processes. These pieces are called patches
•  The patches may be further subdivided into smaller rectangular pieces that

are called tiles, and these are assigned to shared-memory threads within
the process.

•  However, WRFDA does not support shared memory parallelism! So
distributed memory is what I will cover here.

33

Inter-processor
communication

Parallelism in WRFDA: Multi-level Decomposition

34

Communication is required between patches when a
horizontal index is incremented or decremented on the
right-hand-side of an assignment.

On a patch boundary, the index may refer to a value that
is on a different patch.

Following is an example code fragment that requires
communication between patches

Note the tell-tale +1 and –1 expressions in indices for rr,
H1, and H2 arrays on right-hand side of assignment.

These are horizontal data dependencies because the
indexed operands may lie in the patch of a neighboring
processor. That neighbor’s updates to that element of
the array won’t be seen on this processor.

When
Needed?

Why?

Signs in
code

Distributed Memory Communications

35

 (da_transfer_xatowrf.inc)

subroutine da_transfer_xatowrf(grid)
. . .
 do k=kts,kte
 do j=jts,jte+1
 do i=its,ite+1
 u_cgrid(i,j,k)=0.5*(grid%xa%u(i-1,j ,k)+grid%xa%u(i,j,k))
 v_cgrid(i,j,k)=0.5*(grid%xa%v(i ,j-1,k)+grid%xa%v(i,j,k))
 end do
 end do
 end do
 . . .

Distributed Memory Communications

Halo (contains
information about

adjacent patch)

Distributed Memory Communications

37

Inter-processor
communication

(Halos update
from adjacent

patch after each
minimization step) Halo (contains

information about
adjacent patch)

Distributed Memory Communications

38

Grid Representation in Arrays

•  Increasing indices in WRFDA arrays run
•  West to East (X, or I-dimension)
•  South to North (Y, or J-dimension)
•  Bottom to Top (Z, or K-dimension)

•  Storage order in WRFDA is IJK , but for WRF, it is IKJ
(ARW) and IJK (NMM)

•  Output data has grid ordering independent of the
ordering inside the WRFDA model

39

Grid Representation in Arrays

•  The extent of the logical or domain dimensions is always
the "staggered" grid dimension. That is, from the point
of view of a non-staggered dimension (also referred to
as the ARW “mass points”), there is always an extra cell
on the end of the domain dimension

•  In WRFDA, the minimization is on A-grid (non-
staggered grid). The wind components will be
interpolated from A-grid to C-grid (staggered grid)
before they are output, to conform with standard WRF
format

40

Summary

•  WRFDA
•  is designed to be an easy-to-use data assimilation system for use

with the WRF model
•  is designed within the WRF Software Framework for rapid

development and ease of modification
•  is compiled in much the same way as WRF
•  can be run in parallel for quick assimilation of large amounts of

data on large domains

41

Appendix – WRFDA Resources

•  WRFDA users page
•  http://www2.mmm.ucar.edu/wrf/users/wrfda
•  Download WRFDA source code, test data, related packages and

documentation
•  Lists WRFDA news and developments

•  Online documentation
•  http://www2.mmm.ucar.edu/wrf/users/docs/user_guide_V3/

users_guide_chap6.htm
•  Chapter 6 of the WRF Users’ Guide; documents installation of WRFDA and

running of various WRFDA methods
•  Online Tutorial, several helpful pages:
•  http://www2.mmm.ucar.edu/wrf/users/wrfda/OnlineTutorial/

•  WRFDA user services and help desk
•  wrfhelp@ucar.edu

42

Appendix – WRFDA History
�  Developed from MM5 3DVar beginning around 2002, first

version (2.0) released December 2003
�  4DVAR capability added in 2008, made practical with

parallelism starting with Version 3.4 (April 2012)
�  Developed and supported by WRFDA group of the

Mesoscale and Microscale Meteorology Lab of NCAR
�  Requirements emphasize flexibility over a range of

platforms, applications, users, performance
�  Current release WRFDA v3.9 (April 2017)
�  Shares the WRF Software Framework

43

