
Basics of Data Assimilation
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Why Data Assimilation?

We need initial conditions for NWP

We have limited observations

Simplest: interpolate between observations

. objective analysis
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Function Fitting
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Function Fitting
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Function Fitting
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Function Fitting
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Function Fitting
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Function Fitting
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Function Fitting
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Why Data Assimilation? (II)

Real observing networks

. observations are imperfect

. obs may be indirect:
measured variables differ from forecast-model variables

. inhomogeneous in space and time → gaps

Use other information to fill gaps

. e.g., previous forecast (background or first guess)

. How to combine with observations?

Observations (and forecasts!) have errors

. How to account for this?

Indirect observations

. How to spread information from observed variables to model variables?
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A Basic Example

Two instruments, both measure a quantity x

. observations have form

y1 = x+ ε1,
y2 = x+ ε2

. observation errors ε1, ε2 are random but we know something about
their statistics

Given observations y1 and y2, estimate x

. since estimate is imperfect, want estimate of its accuracy as well.
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The Minimum Variance Solution

Acknowledge probabilistic aspects of problem

. obs errors are random

. can’t know true value of x; can only evaluate expected errors

Seek unbiased xa with minimum expected squared error

. xa − x is error

. require

E(xa − x) = 0

. minimize

E
(
(xa − x)2

)
= Var (xa − x)
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The Minimum Variance Solution (cont.)

Spse xa is linear combination of observations,

xa = α1y1 + α2y2 = (α1 + α2)x+ α1ε1 + α2ε2

Then,
E(xa − x) = 0 ⇒ α1 + α2 = 1 if E(εi) = 0

Next,

E
(
(xa − x)2

)
= E

[
{α1(y1 − x) + α2(y2 − x)}2

]
= E

[
α2
1ε

2
1 + α2

2ε
2
2

]
if E(ε1ε2) = 0

= α2
1σ

2
1 + (1− α1)

2σ2
2,

where σ2
i = Var (εi)
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The Minimum Variance Solution (cont.)

Minimizing w.r.t. α’s then gives

α1 = σ2
2/(σ

2
1 + σ2

2), α2 = σ2
1/(σ

2
1 + σ2

2)

Properties

. solution depends only on observation-error variances

. observations with large errors receive small weight

. expected squared error

E
(
(xa − x)2

)
= α2

1σ
2
1 + α2

2σ
2
2 = σ2

1σ
2
2/(σ

2
1 + σ2

2)

. error of xa is (on average) smaller than error of either observation

Best linear unbiased estimator (BLUE)
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The Bayesian Solution

True state is unknown

. observations, models both have random errors

. wish to calculate p(x|y1, y2), probability density of x given y1 and y2.
Also known as the posterior density.

Bayes rule

. p(x|y1, y2) ∝ p(y2|x, y1)p(x|y1)

. if obs errors independent, p(y2|x, y1) = p(y2|x)
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Bayes Illustrated

. p(x|y1) (blue)
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Bayes Illustrated (cont.)

. p(x|y1) (blue)

. p(y|x) for y = 0.75 (red)
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Bayes Illustrated (cont.)

. p(x|y1) (blue)

. p(y|x) for y = 0.75 (red)

. p(x|y) ∝ p(y|x)p(x) (black)

x

 p
(x

) 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

1

2

3

4

5

18



Bayes Solution for Gaussian Errors

Suppose densities are Gaussian

. e.g., of the form p(x) = c exp(−1
2(x− x̄)2/σ2)

Bayes rule involves multiplication of densities

. products of Gaussians amount to adding exponents

. for two observations, posterior density proportional to

exp[−1
2J(x)] = exp[−1

2(x− y1)2/σ2
1 − 1

2(x− y2)2/σ2
2]

Yields same answer as minimum-variance approach

. left as exercise

. hint: write exp[−1
2J(x)] = exp[−1

2(x− xa)2/σ2
a]
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Background Forecasts

Often, have prior information in addition to observations

. climatology

. forecast from earlier time (first guess, background)

In NWP, background forecasts often as accurate as observations

. propagates information from previous obs forward in time

Need to estimate error statistics for DA
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Many variables

Notation

. x = continuous state of system projected onto discrete basis, e.g.
grid-point values or Fourier coefficients

. y = all observations concatenated into single vector
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Observation Operator and Observation Errors

Assimilation requires relation of observations to x

. observation model

y = H(x) + ε

. H is observation (or forward) operator mapping state onto obs

. e.g., interpolation for in-situ obs of state variables or radiative-transfer
integrals for remotely sensed radiances

. H may be nonlinear; errors may not be additive

Three sources of observation error

. measurement error: noise in instrument or uncertainty in location

. errors of representativeness: obs influenced by scales not represented
in discrete basis of x

. observation operator: relation of obs to x may be incorrectly specified

. ε is sum of all three effects
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Multivariate Gaussians

Probability density function

. p(x) = c exp
(
(x− x)TP−1(x− x)

)
. completely specifed by mean x and covaraince matrix P

. P describes statistical relations between elements of x

Standard assumptions

. Gaussian forecast errors: x ∼ N(xb,B)

. Gaussian obs errors, linear obs operator: y = Hx + ε, with
ε ∼ N(0,R)
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Bayes rule for Gaussians

. Products of Gaussian yield Gaussians, so posterior (or analysis) pdf is
also Gaussian. Thus, need formulas for its mean and covariance

. analysis equations:

xa = (I−KH)xb + Kyo ; A = (I−KH)B,

. Kalman gain

K = BHT (HBHT + R)−1 [c.f., α2 = σ2
1/(σ

2
1 + σ2

2) ]

. equivalently, compute xa as minimizer of

J(x) = (x− xb)
TB−1(x− xb) + (yo −Hx)TR−1(yo −Hx)T
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Importance of Covariances

. 2D: x = (x1, x2)

. forecast/prior
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Importance of Covariances

. observation, y = xt1 + Gaussian noise = 1.4

. observation likelihood independent of x2
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Importance of Covariances

. analysis/posterior, [x1, x2|y]

. Cov(x1, x2) provides information on unobserved variable
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Practical Considerations

Dimension of state vector may exceed 108

Implement Bayes rule in n dimensions

. pdfs are functions of n variables

. even discretizing each variable with 10 “points” requires 10n total
degrees of freedom

Implement Gaussian update

. densities specified by their mean and covariances

. requires n floating point numbers for mean, n(n−1)/2 for covariance

. moreover, background error covariances poorly known

Necessity for approximation and simplification
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Additional Matters

Quality control

. identify observations with gross errors

. crucial in operational schemes

Computational issues

. tractable covariance models

. minimization

Propagation of information in time

. role of dynamical systems

. sources and evolution of forecast error

Nonlinearity and non-Gaussianity
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