Basics of Data Assimilation
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Why Data Assimilation?

We need initial conditions for NWP
We have limited observations

Simplest: interpolate between observations

> objective analysis



Function Fitting
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> field to be estimated

spatial coordinate




Function Fitting
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Function Fitting
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spatial coordinate

> observations at discrete points; no obs error




Function Fitting
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> cubic-spline interpolation

spatial coordinate



Function Fitting
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> interpolation gives good estimate of scales resolved by obs



Function Fitting
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> imperfect observations (std. dev. 0.2)



Function Fitting
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Why Data Assimilation? (II)

Real observing networks
> observations are imperfect

> obs may be indirect:
measured variables differ from forecast-model variables

> inhomogeneous in space and time — gaps

Use other information to fill gaps
> e.g., previous forecast (background or first guess)

> How to combine with observations?

Observations (and forecasts!) have errors

> How to account for this?

Indirect observations

> How to spread information from observed variables to model variables?



A Basic Example

Two instruments, both measure a quantity x

> observations have form

Y1 T+ €1,
Y2 = T+ €2

> observation errors €1, €5 are random but we know something about
their statistics

Given observations y; and y,, estimate x

> since estimate is imperfect, want estimate of its accuracy as well.



he Minimum Variance Solution

Acknowledge probabilistic aspects of problem

> obs errors are random

> can't know true value of x; can only evaluate expected errors

Seek unbiased x, with minimum expected squared error
> x, — T IS error
> require
Elx,—z)=0
> minimize
E ((zq — x)%) = Var (z, — z)



The Minimum Variance Solution (cont.)

Spse x, i1s linear combination of observations,
Tq = 1y1 + aoyz = (a1 + a2)x + arer + aze
Then,

E(.I‘G—CC):O = a1+ a9 =1 IfE(GZ):O

B(@wa-2)?) = EB|{oly—a)+az(ys — )]
= E |aj€l + a3és] if £(e162) =0

= ajoi+ (1 —aq)%o3,

where o = Var (¢;)



The Minimum Variance Solution (cont.)

Minimizing w.r.t. a's then gives
a1 = 03/(0f +03), 0z =0i/(0] +03)

Properties
> solution depends only on observation-error variances
> observations with large errors receive small weight
> expected squared error
E ((za - 2)?) = a30? + 3o} = %o}/ (03 + 0})

> error of x, is (on average) smaller than error of either observation

Best linear unbiased estimator (BLUE)



he Bayesian Solution

True state is unknown
> observations, models both have random errors

> wish to calculate p(x|y1,y2), probability density of = given y; and ys.
Also known as the posterior density.

Bayes rule

> p(xlyr, y2) o< p(yz|e, y1)p(ely)
> if obs errors independent, p(y2|x,y1) = p(y2|x)



Bayes lllustrated

> p(x|y1) (blue)
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Bayes lllustrated (cont.)

> p(xz|y;) (blue)
> p(y|z) for y = 0.75 (red)
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Bayes lllustrated (cont.)

> p(x|y1) (blue)
> p(y|x) for y = 0.75 (red)

> p(z|y) o< p(y|z)p(z) (black)

0 0.2 0.4 0.6 0.8

1.4

1.6

1.8




Bayes Solution for Gaussian Errors

Suppose densities are Gaussian
> e.g., of the form p(z) = cexp(—i(x — z)?/0?)

Bayes rule involves multiplication of densities
> products of Gaussians amount to adding exponents

> for two observations, posterior density proportional to

exp[—3J(x)] = exp[—5(z — y1)?/0f — 5(x — y2)?/03]

Yields same answer as minimum-variance approach
> left as exercise

> hint: write exp[—3J(z)] = exp[—1(z — x4)?/02]



Background Forecasts

Often, have prior information in addition to observations
> climatology

> forecast from earlier time (first guess, background)

In NWP, background forecasts often as accurate as observations

> propagates information from previous obs forward in time

Need to estimate error statistics for DA



Many variables

Notation

> X = continuous state of system projected onto discrete basis, e.g.
grid-point values or Fourier coefficients

> y = all observations concatenated into single vector



Observation Operator and Observation Errors

Assimilation requires relation of observations to x
> observation model
y=H(x)+e¢
> H is observation (or forward) operator mapping state onto obs

> e.g., interpolation for in-situ obs of state variables or radiative-transfer
integrals for remotely sensed radiances

> H may be nonlinear; errors may not be additive

Three sources of observation error

> measurement error: noise in instrument or uncertainty in location

> errors of representativeness: obs influenced by scales not represented
in discrete basis of x

> observation operator: relation of obs to x may be incorrectly specified

> € is sum of all three effects



Multivariate Gaussians

Probability density function
> p(x) = cexp ((x —x)TP~!(x — X))
> completely specifed by mean X and covaraince matrix P

> P describes statistical relations between elements of x

Standard assumptions
> Gaussian forecast errors: x ~ N(xp, B)

> Gaussian obs errors, linear obs operator: y = Hx + ¢, with
e ~ N(0,R)



Bayes rule for Gaussians

> Products of Gaussian yield Gaussians, so posterior (or analysis) pdf is
also Gaussian. Thus, need formulas for its mean and covariance

> analysis equations:

xa = (1— KH)x, + Ky, ; A= (- KH)B,

> Kalman gain
K=BHY(HBHY + R)™! [cf., as =02/(6? + 02)]

> equivalently, compute x, as minimizer of
J(X) — (X T xb)TB_l(X _ xb) + (YO o HX)TR_l(yo o HX)T



Importance of Covariances

> 2D: x = (1, x9)

> forecast/prior
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Importance of Covariances

> observation, y = x} + Gaussian noise = 1.4

> observation likelihood independent of x4
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Importance of Covariances

> analysis/posterior, [z1, z2|y]

> Cov(x1,x2) provides information on unobserved variable

2

1.5




Practical Considerations

Dimension of state vector may exceed 103

Implement Bayes rule in n dimensions
> pdfs are functions of n variables

> even discretizing each variable with 10 “points” requires 10™ total
degrees of freedom

Implement Gaussian update
> densities specified by their mean and covariances
> requires n floating point numbers for mean, n(n—1)/2 for covariance

> moreover, background error covariances poorly known

Necessity for approximation and simplification



Additional Matters

Quality control
> identify observations with gross errors

> crucial in operational schemes

Computational issues
> tractable covariance models

> minimization

Propagation of information in time
> role of dynamical systems

> sources and evolution of forecast error

Nonlinearity and non-Gaussianity



