

Algorithm (6): WRFDA Minimization Algorithms Jonathan (JJ) Guerrette NCAR/MMM

WRFDA Tutorial, July 2019

Revisiting the nonlinear variational cost functions: 3DVAR

$$J = \frac{1}{2} (\mathbf{x} - \mathbf{x}_b)^{\mathrm{T}} \mathbf{B}^{-1} (\mathbf{x} - \mathbf{x}_b) \qquad \mathbf{x} \in \mathbb{R}^N \\ + \frac{1}{2} (H(\mathbf{x}) - \mathbf{y})^{\mathrm{T}} \mathbf{R}^{-1} (H(\mathbf{x}) - \mathbf{y}) \qquad \mathbf{y} \in \mathbb{R}^M$$

4DVAR

$$J = \frac{1}{2} (\mathbf{x} - \mathbf{x}_{b})^{\mathrm{T}} \mathbf{B}^{-1} (\mathbf{x} - \mathbf{x}_{b})$$

+ $\frac{1}{2} \sum_{k} \left[M_{k} (H_{k}(\mathbf{x})) - \mathbf{y}_{k} \right]^{\mathrm{T}} \mathbf{R}^{-1} \left[M_{k} (H_{k}(\mathbf{x})) - \mathbf{y}_{k} \right]$

Note: $M_k(H_k(x))$ is a chain of functional relationships, which can be represented as a single function, $H_k(x)$. This simplification and the 4DVAR summation collapsing to a single term will be used from this point forward for simplicity.

Iterative nonlinear minimization techniques

- Gradient or Steepest Descent
 - Nonlinear J
 - Step in opposite direction of the gradient: $\delta x = -\gamma \cdot \nabla J$
 - Perform line search to determine scalar γ
 - Slow convergence, but easy to formulate
- <u>Truncated Gauss-Newton</u> (TGN)
 - Minimize a sequence of quadratic approximations of J
 - Efficient for weakly nonlinear problems, but higher complexity
 - Used at most operational NWP centers and in WRFDA
- Quasi-Newton (e.g., BFGS or L-BFGS)
 - Nonlinear J
 - Use ∇J to approximate the Hessian (second derivative of J) to speed up convergence
 - Effective for highly nonlinear problems OR when quadratic approximation of J is unavailable

What is a quadratic approximation of J?

Full Nonlinear J (same as slide 2)

$$J = \frac{1}{2} (\mathbf{x} - \mathbf{x}_b)^{\mathrm{T}} \mathbf{B}^{-1} (\mathbf{x} - \mathbf{x}_b) \qquad \mathbf{x} \in \mathbb{R}^N \\ + \frac{1}{2} (H(\mathbf{x}) - \mathbf{y})^{\mathrm{T}} \mathbf{R}^{-1} (H(\mathbf{x}) - \mathbf{y}) \qquad \mathbf{y} \in \mathbb{R}^M$$

Preconditioned <u>Quadratic</u> Approximation

Т

"Incremental Variational DA": Minimization is cast in terms of an increment while the quantity of interest is held constant

$$\tilde{J}_{i} = \frac{1}{2} \left(\sum_{j=1}^{i} \delta \boldsymbol{v}^{j} \right)^{T} \left(\sum_{j=1}^{i} \delta \boldsymbol{v}^{j} \right) \qquad \boldsymbol{d}_{i} = \boldsymbol{y} - H(\boldsymbol{x}_{i-1}) \\ + \frac{1}{2} \left(\mathbf{HL} \delta \boldsymbol{v}^{i} - \boldsymbol{d}_{i} \right)^{T} \mathbf{R}^{-1} \left(\mathbf{HL} \delta \boldsymbol{v}^{i} - \boldsymbol{d}_{i} \right) \qquad \mathbf{B} = \mathbf{LL}^{\mathrm{T}}$$

 $i \equiv [outer loop iteration]$

Derived by approximating $H(\mathbf{x} + \delta \mathbf{x}) \cong H(\mathbf{x}) + \mathbf{H}\delta \mathbf{x}$

 $ilde{J}_i$ is quadratic in terms of the increment, $\delta oldsymbol{v}^{
m i}$

 \tilde{J}_i circumvents nonlinear functionals to enable alternative solution methods

Minimize \tilde{J}_i OR find where $(\nabla \tilde{J}_i = \mathbf{0})$ Zero Gradient $\nabla_{\delta v^i} \tilde{J}_i = \mathbf{0} = \sum_{j=1}^{i-1} \delta v^j + \delta v^i + \mathbf{L}^T \mathbf{H}^T \mathbf{R}^{-1} (\mathbf{H} \mathbf{L} \delta v^i - d_i)$

$$\begin{array}{l} \text{Minimize } \tilde{J}_i \text{ means find where } \nabla \tilde{J}_i = \mathbf{0} \\ \text{Zero Gradient} \\ \nabla_{\delta v^i} \tilde{J}_i = \mathbf{0} = \sum_{j=1}^{i-1} \delta v^j + \delta v^i + \mathbf{L}^{\mathrm{T}} \mathbf{H}^{\mathrm{T}} \mathbf{R}^{-1} (\mathbf{H} \mathbf{L} \delta v^i - d_i) \\ \text{Solve for } \delta v^i \\ (\mathbf{I} + \mathbf{L}^{\mathrm{T}} \mathbf{H}^{\mathrm{T}} \mathbf{R}^{-1} \mathbf{H} \mathbf{L}) \delta v^i = -\sum_{j=1}^{i-1} \delta v^j + \mathbf{L}^{\mathrm{T}} \mathbf{H}^{\mathrm{T}} \mathbf{R}^{-1} d_i \\ \delta v^i = -(\mathbf{I} + \mathbf{L}^{\mathrm{T}} \mathbf{H}^{\mathrm{T}} \mathbf{R}^{-1} \mathbf{H} \mathbf{L})^{-1} \left(\sum_{j=1}^{i-1} \delta v^j + \mathbf{L}^{\mathrm{T}} \mathbf{H}^{\mathrm{T}} \mathbf{R}^{-1} d_i \right) \\ \text{where} \quad \nabla^2 \tilde{J}_i = (\mathbf{I} + \mathbf{L}^{\mathrm{T}} \mathbf{H}^{\mathrm{T}} \mathbf{R}^{-1} \mathbf{H} \mathbf{L}) \text{ is the Hessian of } \tilde{J}_i \end{array}$$

Minimize
$$\tilde{J}_i$$
 means find where $\nabla \tilde{J}_i = \mathbf{0}$
Zero Gradient
 $\nabla_{\delta v^i} \tilde{J}_i = \mathbf{0} = \sum_{j=1}^{i-1} \delta v^j + \delta v^i + \mathbf{L}^T \mathbf{H}^T \mathbf{R}^{-1} (\mathbf{H} \mathbf{L} \delta v^i - d_i)$
Solve for δv^i
 $(\mathbf{I} + \mathbf{L}^T \mathbf{H}^T \mathbf{R}^{-1} \mathbf{H} \mathbf{L}) \delta v^i = -\sum_{j=1}^{i-1} \delta v^j + \mathbf{L}^T \mathbf{H}^T \mathbf{R}^{-1} d_i$
 $\delta v^i = -(\mathbf{I} + \mathbf{L}^T \mathbf{H}^T \mathbf{R}^{-1} \mathbf{H} \mathbf{L})^{-1} \left(\sum_{j=1}^{i-1} \delta v^j + \mathbf{L}^T \mathbf{H}^T \mathbf{R}^{-1} d_i\right)$

Side note: gradient descent increment is $\delta v^i = -\gamma \cdot \left(\sum_{j=1}^{i-1} \delta v^j + \mathbf{L}^T \mathbf{H}^T \mathbf{R}^{-1} d_i\right)$

 $\begin{aligned} \mathbf{A}\widehat{\boldsymbol{x}} &= \boldsymbol{b} \quad \text{where} \quad \mathbf{A} \equiv \left(\mathbf{I} + \mathbf{L}^{\mathrm{T}}\mathbf{H}^{\mathrm{T}}\mathbf{R}^{-1}\mathbf{H}\mathbf{L}\right) = \nabla^{2}\widetilde{J}_{i} \\ \widehat{\boldsymbol{x}} \equiv \delta\boldsymbol{v}^{i} \\ \boldsymbol{b} \equiv -\sum_{j=1}^{i-1}\delta\boldsymbol{v}^{j} + \mathbf{L}^{\mathrm{T}}\mathbf{H}^{\mathrm{T}}\mathbf{R}^{-1}\boldsymbol{d}_{i} = -\nabla\widetilde{J}_{i}\big|_{\widehat{\boldsymbol{x}}=\mathbf{0}} \end{aligned}$

Linear Algebra Solvers ($A\hat{x} = b$)

Commonly used methods for *explicit* systems:

- Gaussian Elimination
- Cramer's Rule
- Gauss-Seidel
- LU Decomposition
- Singular Value Decomposition (SVD)

All of these require an *explicit* representation of **A**, and are computationally prohibitive in high dimensions

The Hessian for NWP problems is *implicit* (formed through numerical operations), <u>symmetric</u>, and can have dimensionality of $N \sim 10^6$ to 10^8

Krylov Subspaces (used in WRFDA)

• Examples: Conjugate Gradient (CG) or Lanczos Recurrance (Lanczos is mathematically equivalent to CG in infinite precision)

e.g., Golub and Van Loan, <u>Matrix Computations</u>, 3rd ed. (1996) or 4th ed. (2013)

- Iterative; hence the phrase "inner-loop", in addition to the "outerloop" comprising the TGN minimization
- Designed specifically to work with *implicit* and <u>symmetric</u> **A**
- Each inner iteration: derive an update to δv^i by multiplying **A** (Hessian of \tilde{J}_i) by a vector related to **b** (gradient of \tilde{J}_i)

Krylov Subspaces; how do they work? The rank – l Krylov subspace is formed by l - 1 multiplications of **A** by **b** $\mathcal{K}_l(\mathbf{A}, \mathbf{b}) \cong \operatorname{span}\{\mathbf{b}, \mathbf{A}\mathbf{b}, \mathbf{A}^2\mathbf{b}, \dots, \mathbf{A}^{l-1}\mathbf{b}\}$

$$\cong$$
 span{ $p_1, p_2, ..., p_l$ }

where

 $p_i A p_j = 0$ for $i \neq j$ Each polynomial term is linearly independent or conjugate to all others with respect to inner-product with A

Thus \mathbf{Q}_l is a low-rank basis for \mathbf{A} and a solution to $\mathbf{A}\hat{\mathbf{x}} = \mathbf{b}$ can be expressed by a linear combination of \mathbf{p}_j 's:

• For CG, α_j is found by minimizing the residual error norm of the cost function gradient,

 $\|\boldsymbol{r}_j\| = \|\boldsymbol{b} - \mathbf{A}\widehat{\boldsymbol{x}}_j\|$

e.g., <u>Matrix Computations</u> by Golub and Van Loan.

• r_j and α_j depend on all previous iterations

Nonlinear versus quadratic cost function reduction

The quadratic approximation error shows up when H is nonlinear

Nearly linear case: 3D-Var 15km NWP w/ GTS observations over North America ($N = 27 \times 10^6$, $M = 36 \times 10^3$)

 Differences between J_{NL} and J_{QUAD} are larger when increment is of larger magnitude (e.g., 1st outer iteration) Weakly nonlinear case: 3D-Var 3km NWP w/ Community Radiative Transfer Model (CRTM) for infrared radiances over Eastern CONUS (N = 497x10⁶, M = 114x10³)

- J_{NL} convergence rate depends on number of inner iterations
- Cost function has not converged despite seemingly growing linearity

Nonlinear versus quadratic cost function reduction

The quadratic approximation error shows up when H is nonlinear

Very nonlinear case: 4D-Var Black Carbon emission inversion with assumed <u>lognormal</u> background error distribution and in-situ obs. ($N = 250 \times 10^3$, $M = 12 \times 10^3$)

WRFDA-Chem line search described in Guerrette and Henze (2017)

Standard TGN:

- J_{NL} increases in 1st iteration
- J_{QUAD} is *negative* in early outer iterations

TGN + line search after 1st outer iteration:

- Evaluate $J(x^0 + \gamma \cdot \delta x^1) \sim 9$ times to determine optimal step length (γ)
- Improves J_{NL} convergence rate
- Reduces nonlinearity in subsequent iterations, measured by J_{QUAD} error
- Additional expense, but prevents divergence in extremely nonlinear problems

Q: Why is it called "truncated" Gauss-Newton? A:

- The rank-*l* approximation to the Hessian inverse, $\mathbf{A}^{-1} \cong \widetilde{\mathbf{A}}_l^{-1}$, is truncated by the number of inner loop iterations (*l*) chosen, producing an approximate solution, $\widehat{\mathbf{x}} \cong \widehat{\mathbf{x}}_l = \widetilde{\mathbf{A}}_l^{-1} \mathbf{b}$. The non-truncated Gauss-Newton solution requires a rank-*N* Hessian inverse (and *N* basis vectors/iterations)
- Due to the minimum-residual condition for deriving α_j , q_j in most iterative Krylov methods, they converge much faster than a rank-l eigen-decomposition of **A** for solving $\mathbf{A}\hat{\mathbf{x}} = \mathbf{b}$
- Several tradeoffs when choosing *l*:
 - Each iteration increases memory and wall-time requirements
 - Higher rank approximation yields a more accurate solution to the quadratic problem, but not necessarily to the nonlinear problem
 - Later iterations suffer from round-off error that cause loss of orthogonality/conjugacy between basis vectors $(q_j's)$; can be mitigated with re-orthogonalization (e.g., Modified Gramm-Schmidt algorithm) or by using fewer iterations
- Note: a convergence criteria is useful to cut-off inner loop when # observations is small (available in WRFDA)

On the loss of orthogonality

Figure 1. The value of the quadratic function $J[\mathbf{v}_i]$ during the solver iterations *i*. Here, m = 40 and n = 200. Results are displayed for algorithm 3 with (\circ) and without (\Box) orthogonalization and for algorithm 5 with (+) and without (\times) re-orthogonalization. Note that the values of the cost function at the last iteration are 9 and 3×10^4 , respectively.

Gratton and Tshimanga (2009), QJRMS

As # iterations approaches M, the loss of orthogonality causes J_{QUAD} to diverge from best numerical approximation

This may be less of an issue when *M* is very large in real data applications...

On the loss of orthogonality

(only showing 1st outer iteration)

LARGE, weakly nonlinear system # model parameters, $N = 497 \times 10^6$ # observations, $M = 114 \times 10^3$ (same problem as slide 14)

iterations << *M*; rate of divergence for J_{QUAD} without re-orthogonalization is small for reasonable *l*

Re-orthogonalization has high memory cost, which must be weighed against applicationdependent needs and benefit (MUCH more expensive in EnVar). It is likely used in operations due to demands of accuracy.

CG/Lanczos converges faster than TEVD Black Carbon Emission flux inversion with WRFDA-Chem

Bousserez, Guerrette, and Henze (submitted manuscript)

Lanczos Recurrence and Eigen-pairs

- Hessian eigenvalues are a useful diagnostic for comparing observation DOFs
- Hessian eigen-pairs can be used in preconditioning subsequent outer iterations

Lanczos produces a special basis set, \mathbf{Q}_l , that satisfies

$$\mathbf{Q}_l^{\mathrm{T}} \mathbf{A} \mathbf{Q}_l = \mathbf{K}_l \in \mathbb{R}^{l \times l}$$
, which is an $l \times l$ tridiagonal matrix

An eigen-decomposition for \mathbf{K}_l is found easily ($l \leq 100$) and can be used to produce a rank-l decomposition of \mathbf{A} :

$$\mathbf{A} \cong \mathbf{Q}_l \mathbf{K}_l \mathbf{Q}_l^{\mathrm{T}} = \mathbf{Q}_l \mathbf{Z}_l \mathbf{\Lambda}_l \mathbf{Z}_l^{\mathrm{T}} \mathbf{Q}_l^{\mathrm{T}} = \mathbf{E}_l \mathbf{\Lambda}_l \mathbf{E}_l^{\mathrm{T}}$$

diagonal Ritz value matrix (good approximations to leading eigenvalues of **A**)

Ritz vector matrix (good approximations to leading eigenvectors of **A**)

Example: approximated Eigenvalues

- Each colored curve shows the Ritz values (approximate eigenvalues) of the Hessian (minus 1) from the Lanczos recurrence for a different number of iterations (*l*)
- Leading eigenvalues are approximated well (matching exact Hessian eigenvalues)
- Trailing/intermediate eigenvalues are severely under-estimated, because each non-converged Ritz-mode provides a mixture of eigen-modes

Relevant WRFDA namelist settings

&wrfvar6

- 1. max_ext_its [int]: number of outer loop iterations
- 2. ntmax [int]: maximum number of inner loop iterations (unless converged) (specify as many values as max_ext_its)
- 3. eps [float]: relative reduction in $(\nabla \tilde{J}_i)^T (\nabla \tilde{J}_i)$ for convergence test (specify as many values as max_ext_its)
- 4. orthonorm_gradient [bool]: use modified Gramm-Schmidt for reorthogonalization
- 5. use_lanczos [bool]: use Lanczos recurrance instead of CG; note that WRFDA's Lanczos option always includes re-orthogonalization

Concluding

- WRFDA provides a testing ground for TGN and Krylov Subspace methods on regional NWP problems
- Can be used to learn about the properties of those algorithms and the eigen-spectra of realistically sized applications
- Note: 3DEnVar in WRFDA uses the same minimization algorithms as 3D-Var with addition of ALPHA control variable for ensemble perturbations
- Multi-resolution 4D-Var (coming soon to WRFDA) will be closer to the capability used at NWP centers, utilizing a lower resolution for the quadratic minimization
- New algorithms are (or will be) used in next generation DA systems based around OOPS (including JEDI)
 - Full **B** preconditioning instead of sqrt(**B**)
 - Observation (dual) space minimization instead of model (primal) space
 - Block algorithms in the inner loop (extra slides)

Block inner-loop algorithms for TGN (outside WRFDA) Recall for serial Krylov $\mathcal{K}_l(\mathbf{A}, \mathbf{b}) \cong \operatorname{span}\{\mathbf{b}, \mathbf{A}\mathbf{b}, \mathbf{A}^2\mathbf{b}, \dots, \mathbf{A}^{l-1}\mathbf{b}\}$

 Randomized Singular Value Decomposition (RSVD)
 Simultaneous parallel multiplications of Hessian by Gaussian random noise Reduces number of inner loop iterations, which are often time-consuming

$$\mathbf{Y}_{l,m}(\mathbf{A}) \cong \operatorname{span}\{\mathbf{A}^m \mathbf{\Omega}_m\}$$
 where $\mathbf{\Omega}_m = [\boldsymbol{\omega}_1, \dots, \boldsymbol{\omega}_m] \sim \mathcal{N}(0, 1)$

Halko et al. (2011); Bousserez and Henze (2018); Bousserez, Guerrette, and Henze (submitted)

2. Block Krylov More efficient use of gradient information, but very expensive when using full re-orthogonalization

 $\mathcal{K}_{l,m}(\mathbf{A}, \mathbf{\beta}_m) \cong \operatorname{span}\{\mathbf{\beta}_m, \mathbf{A}\mathbf{\beta}_m, \mathbf{A}^2\mathbf{\beta}_m, \dots, \mathbf{A}^{l-1}\mathbf{\beta}_m\}$ where $\mathbf{\beta}_m$ contains realizations of \mathbf{b}

Each gradient realization comes from a different forecast ensemble member

Golub and Underwood (1977); Golub and Van Loan (1996,2013); Musco and Musco (2015); Mercier et al. (2018,2019); Bousserez, Guerrette, and Henze (submitted)

Inner-loop convergence of "block" algorithms

Guerrette et al. (unpublished work)