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Revisiting the nonlinear variational cost functions:
3DVAR

4DVAR

Note: !" #" $ is a chain of functional relationships, which can be represented as a 
single function, #" $ .  This simplification and the 4DVAR summation collapsing to a 
single term will be used from this point forward for simplicity.
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Iterative nonlinear minimization techniques
• Gradient or Steepest Descent 

• Nonlinear !
• Step in opposite direction of the gradient: δ# = −& ' (!
• Perform line search to determine scalar &
• Slow convergence, but easy to formulate

• Truncated Gauss-Newton (TGN)
• Minimize a sequence of quadratic approximations of !
• Efficient for weakly nonlinear problems, but higher complexity
• Used at most operational NWP centers and in WRFDA

• Quasi-Newton (e.g., BFGS or L-BFGS)
• Nonlinear !
• Use (! to approximate the Hessian (second derivative of !) to speed up convergence
• Effective for highly nonlinear problems OR when quadratic approximation of ! is 

unavailable
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What is a quadratic approximation of !?
Full Nonlinear ! (same as slide 2)

“Incremental Variational DA”:
Minimization is cast in terms of an increment
while the quantity of interest is held constant

! = #
$ % − %' ()*# % − %'
+ #
$ , % − - (.*# , % − -

/!0 = #
$ ∑23#0 δ56 ( ∑23#0 δ52

+ #
$ 78δ50 − 90

(.*# 78δ50 − 90
9: = - − , %0*#

Derived by approximating , % + δ% ≅ , % + 7δ%
/!0 is quadratic in terms of the increment, δ5:
/!0 circumvents nonlinear functionals to enable alternative solution methods

Preconditioned Quadratic Approximation

i ≡ outer loop iteration
) = 88(

% ∈ ℝ@
- ∈ ℝA
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Minimize !"# OR find where ($!"# = &)
Zero Gradient

$'() !"# = & =*
+,-

#.-
/(+ + /(1 + 23435.- 42δ(# − 8#
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Minimize !"# means find where $!"# = &
Zero Gradient

Solve for '()

$*(+ !"# = & =,
-./

#0/
'(- + '() + 234350/ 42δ(# − 8#

9 + 234350/42 '(# = −,
-./

#0/
'(- + 234350/8#

'() = − 9 + 234350/42 0/ ,
-./

#0/
'(- + 234350/8#

where ∇; !"# = 9 + 234350/42 is the Hessian of !"#
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Minimize !"# means find where $!"# = &
Zero Gradient

Solve for '()

$*(+ !"# = & =,
-./

#0/
'(- + '() + 234350/ 42δ(# − 8#

9 + 234350/42 '(# = −,
-./

#0/
'(- + 234350/8#

'() = − 9 + 234350/42 0/ ,
-./

#0/
'(- + 234350/8#

Side note: gradient descent increment is '() = −: ; ∑-./#0/ '(- + 234350/8#
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Minimize !"# OR find where ($!"# = &)
Gradient

Solve for '()

*+, = - where * ≡ / + 123245631 = ∇8 !"#
+, ≡ δ(#
- ≡ −∑<=6#56 δ(< + 1232456># = − ?$!"# +,=&

$@(A !"# = & =B
<=6

#56
'(< + '() + 1232456 31δ(# − >#

/ + 123245631 '(# = −B
<=6

#56
'(< + 1232456>#

Finally, we see that the quadratic minimization is a linear algebra problem
*

-
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Linear Algebra Solvers (!"# = %)
Commonly used methods for explicit systems:
• Gaussian Elimination
• Cramer’s Rule
• Gauss-Seidel
• LU Decomposition
• Singular Value Decomposition (SVD)

All of these require an explicit representation of !, and are 
computationally prohibitive in high dimensions

The Hessian for NWP problems is implicit (formed through 
numerical operations), symmetric, and can have dimensionality of 
&~106 to 108
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Krylov Subspaces (used in WRFDA)
• Examples: Conjugate Gradient (CG) or Lanczos Recurrance (Lanczos is 

mathematically equivalent to CG in infinite precision)
e.g., Golub and Van Loan, Matrix Computations, 3rd ed. (1996) or 4th ed. (2013)

• Iterative; hence the phrase “inner-loop”, in addition to the “outer-
loop” comprising the TGN minimization

• Designed specifically to work with implicit and symmetric !

• Each inner iteration: derive an update to δ#$ by multiplying !
(Hessian of %&$) by a vector related to ' (gradient of %&$)
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Krylov Subspaces; how do they work?

!" #, % ≅ span %, #%, #+%,… , #"-.%
The rank − 2 Krylov subspace is formed by 2 − 1multiplications of # by %

≅ span 4., 4+, … , 4"
where 45#46 = 8 for 9 ≠ ; Each polynomial term is linearly 

independent or conjugate to all others 
with respect to inner-product with #

Thus <" is a low-rank basis for # and a solution to #=> = % can 
be expressed by a linear combination of 46’s:

=>∗ ≅@
6A.

"
B646

• For CG, B6 is found by minimizing the residual error norm of the 
cost function gradient, 

C6 = % − #=>6
e.g., Matrix Computations by Golub and Van Loan.

• C6 and B6 depend on all previous iterations
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! = − $% &'()*+ ,-.)*+/0

3D-Var TGN w/ CG in NWP

Observation 
Operator

12)*+ = 12)*+34 + 67-2)*+

Observations:

AD
Obs.

89
While :;<= ≤ :?@ABC :;<= = :;<= + 1

1E = 1F

[Courtier et al., 1994; Lorenc, 1998]

CG Inner Loop

TL
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HI2@A

JK L34

6M

6

H = JK + 6MNML34N6
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! = − $% &'()*+ ,-.)*+/0

4D-Var TGN w/ CG in NWP

Nonlinear 
Model

Observation 
Operator

12)*+ = 12)*+34 + 67-2)*+

Observations:

AD
Model

AD
Obs.

89

6:

;<

=3>
While ?@AB ≤ ?DEFGH ?@AB = ?@AB + 1

1J = 1K L M2)*+34
[Courtier et al., 1994; Lorenc, 1998]

CG Inner Loop

TL
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AD
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Graham-
Schmidt

while ?EF ≤ N
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QR

;
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6

O = QR + 6<;<=34;6
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Y
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Nonlinear versus quadratic cost function reduction
The quadratic approximation error shows up when ! is nonlinear

Nearly linear case: 3D-Var 15km NWP w/ GTS observations  
over North America (N = 27x106, M	= 36x103) 

• Differences between JNL and JQUAD are 
larger when increment is of larger 
magnitude (e.g., 1st outer iteration)

Weakly nonlinear case: 3D-Var 3km NWP w/ Community 
Radiative Transfer Model (CRTM) for infrared radiances 
over Eastern CONUS (N = 497x106, M	= 114x103)

• JNL convergence rate depends on number 
of inner iterations

• Cost function has not converged despite 
seemingly growing linearity
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Nonlinear versus quadratic cost function reduction
The quadratic approximation error shows up when ! is nonlinear

Very nonlinear case: 4D-Var Black Carbon emission inversion with assumed lognormal

background error distribution and in-situ obs. (N = 250x103, M	= 12x103) 

WRFDA-Chem line search described in 

Guerrette and Henze (2017)

Standard TGN:

• JNL increases in 1st iteration

• JQUAD is negative in early outer 

iterations

TGN + line search after 1st outer 

iteration:

• Evaluate % &' + ) * +&, ~9 times to 

determine optimal step length ())

• Improves JNL convergence rate

• Reduces nonlinearity in subsequent 

iterations, measured by JQUAD error

• Additional expense, but prevents 

divergence in extremely nonlinear 

problems
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Q: Why is it called “truncated” Gauss-Newton?
A:
• The rank-! approximation to the Hessian inverse, "#$ ≅ &"'#$, is truncated by the number 

of inner loop iterations (!) chosen, producing an approximate solution, () ≅ ()' = &"'#$+. 
The non-truncated Gauss-Newton solution requires a rank-, Hessian inverse (and , basis 
vectors/iterations)
• Due to the minimum-residual condition for deriving -., 0. in most iterative Krylov methods, 

they converge much faster than a rank-! eigen-decomposition of " for solving "() = +
• Several tradeoffs when choosing !:

• Each iteration increases memory and wall-time requirements
• Higher rank approximation yields a more accurate solution to the quadratic problem, but not necessarily 

to the nonlinear problem
• Later iterations suffer from round-off error that cause loss of orthogonality/conjugacy between basis 

vectors (0.’s); can be mitigated with re-orthogonalization (e.g., Modified Gramm-Schmidt algorithm) or 
by using fewer iterations

• Note: a convergence criteria is useful to cut-off inner loop when # observations is small 
(available in WRFDA)
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On the loss of orthogonality

Gratton and Tshimanga (2009), QJRMS

Small linear system
# model parameters, ! = 200
# observations, " = 40

As # iterations approaches ", the loss of 
orthogonality causes JQUAD to diverge from 
best numerical approximation

This may be less of an issue when " is very 
large in real data applications…

CG performed in model space as 
presented in previous slides

RPCG: CG performed in observation space to 
reduce computational costs

Difference of 
orthogonalization 
for Quadratic J

(only showing 1st outer iteration)
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On the loss of orthogonality
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LARGE, weakly nonlinear system

# model parameters, ! = 497x106

# observations, " = 114x103

(same problem as slide 14)

# iterations << "; rate of divergence for JQUAD

without re-orthogonalization is small for 

reasonable #

Re-orthogonalization has high memory cost, 

which must be weighed against application-

dependent needs and benefit (MUCH more 

expensive in EnVar). It is likely used in 

operations due to demands of accuracy.

(only showing 1st outer iteration)
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CG/Lanczos converges faster than TEVD
Black Carbon Emission flux inversion with WRFDA-Chem
Bousserez, Guerrette, and Henze (submitted manuscript)

Same as truncated 
eigenvalue 
decomposition (TEVD)

Lanczos Recurrence

Norm of increment 
residual error, relative 
to fully converged !"
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Lanczos Recurrence and Eigen-pairs
• Hessian eigenvalues are a useful diagnostic for comparing observation DOFs
• Hessian eigen-pairs can be used in preconditioning subsequent outer iterations

!"#$!" = &" ∈ ℝ"×", which is an *×* tridiagonal matrix

An eigen-decomposition for &" is found easily (* ≲ 100) and can be 
used to produce a rank-* decomposition of $:

$ ≅ !"&"!"# = !"/"0"/"#!"# = 1"0"1"#
diagonal Ritz value matrix
(good approximations to 
leading eigenvalues of $)

Ritz vector matrix
(good approximations to 
leading eigenvectors of $)

Lanczos produces a special basis set, !", that satisfies 
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! = − $% &'()*+ ,-.)*+/0

4D-Var TGN w/ Lanczos in NWP

Nonlinear 
Model

Observation 
Operator

12)*+ = 12)*+34 + 67-2)*+

Observations:

AD
Model

AD
Obs.

89

7-2)*+ ≈ ;<34!

While =>?@ ≤ =BCDEF

;<3G = HIJ
3GHK

IJ = HK<H

[Courtier et al., 1994; Lorenc, 1998]

Lanczos Inner Loop
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Obs.

AD
Obs.

=CD = =CD + 1

Graham-
Schmidt

M2NO

while =CD ≤ P
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M4 =
!
!

=>?@ = =>?@ + 1
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Example: approximated Eigenvalues
Ei

ge
nv

al
ue

s

Eigenvalue Index

• Each colored curve shows the Ritz 
values (approximate eigenvalues) of 
the Hessian (minus 1) from the 
Lanczos recurrence for a different 
number of iterations (!)

• Leading eigenvalues are 
approximated well (matching exact 
Hessian eigenvalues)

• Trailing/intermediate eigenvalues are 
severely under-estimated, because 
each non-converged Ritz-mode 
provides a mixture of eigen-modes

!
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Relevant WRFDA namelist settings
&wrfvar6

1. max_ext_its [int]: number of outer loop iterations

2. ntmax [int]: maximum number of inner loop iterations (unless converged)
(specify as many values as max_ext_its)

3. eps [float]: relative reduction in !"#$ % !"#$ for convergence test
(specify as many values as max_ext_its)

4. orthonorm_gradient [bool]: use modified Gramm-Schmidt for re-
orthogonalization

5. use_lanczos [bool]: use Lanczos recurrance instead of CG; note that 
WRFDA’s Lanczos option always includes re-orthogonalization

23



Concluding
• WRFDA provides a testing ground for TGN and Krylov Subspace methods on regional 

NWP problems

• Can be used to learn about the properties of those algorithms and the eigen-spectra of 

realistically sized applications

• Note: 3DEnVar in WRFDA uses the same minimization algorithms as 3D-Var with addition 

of ALPHA control variable for ensemble perturbations

• Multi-resolution 4D-Var (coming soon to WRFDA) will be closer to the capability used at 

NWP centers, utilizing a lower resolution for the quadratic minimization

• New algorithms are (or will be) used in next generation DA systems based around OOPS 

(including JEDI)

• Full B preconditioning instead of sqrt(B)

• Observation (dual) space minimization instead of model (primal) space

• Block algorithms in the inner loop (extra slides)
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Block inner-loop algorithms for TGN (outside WRFDA)

1. Randomized Singular Value Decomposition (RSVD)

2. Block Krylov

Halko et al. (2011); Bousserez and Henze (2018); Bousserez, Guerrette, and Henze (submitted)

Golub and Underwood (1977); Golub and Van Loan (1996,2013); Musco and Musco (2015);
Mercier et al. (2018,2019); Bousserez, Guerrette, and Henze (submitted)

Recall for serial Krylov !" #, % ≅ span %, #%, #+%,… , #"-.%

/",0 # ≅ span 1020 where20 = [5.,… ,50]~8 0,1

!",0 #, ;0 ≅ span ;0, #;0, #+;0,… , #"-.;0 where ;0 contains realizations of %
Each gradient realization comes from a different forecast ensemble member

Simultaneous parallel multiplications of Hessian by Gaussian random noise
Reduces number of inner loop iterations, which are often time-consuming

More efficient use of gradient information, but very 
expensive when using full re-orthogonalization
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Inner-loop convergence of “block” algorithms
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Guerrette et al. (unpublished work)

Experimental WRFDA 4D-Var code, 60km CONUS 
domain and 65K conventional meteorological obs.

Regional AROME 3D-Var EDA, 7km Europe domain, 2K 
radar obs. and 500K IR and MW radiance obs.

Mercier et al. (2019), QJRMS

Block Size
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