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Outline

• WRFDA-3DVAR: Incremental formulation

• Background error covariance (B) modeling within WRFDA

• Background error covariance (B) estimation: GEN_BE

• Visualizing B: Single Observation Test



J(x): Scalar cost function

x: The analysis: what we�re trying to find!

xb: Background field (previous forecast)

B: Background error covariance matrix

y: Observations

H: Observation operator: computes model-simulated obs

R: Observation error covariance matrix

WRFDA-3DVar Equation
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However, this cost function is not really what WRFDA uses!

Multiple-Incremental 3D/4D-VAR: Formulation

Zhiquan Liu, NCAR/MMM

January 5, 2016

1 3DVAR

1.1 Non-linear 3DVAR Formulation

Non-linear 3DVAR cost function

J(x) =
1

2
(x� xb)TB�1(x� xb) +

1

2
[H (x)� y]TR�1[H (x)� y] (1)

1.2 Incremental 3DVAR Formulation

Linearization, let �x = x� xg and �xg = xb � xg, thus x = �x+ xg, we have

J(�x) =
1

2
(�x� �xg)TB�1(�x� �xg) +

1

2
[H (�x+ xg)� y]TR�1[H (�x+ xg))� y] (2)

Do Taylor Expansion for observation term

J(�x) =
1

2
(�x� �xg)TB�1(�x� �xg) +

1

2
(H�x� d)TR�1(H�x� d) (3)

where d = y � H (xg) and H is the linearized version of H in the vicinity of xg.

1.3 Control Variable Transform (CVT)

To avoid the inverse calculation of large B matrix, do a change of variable �x = Uv and
�xg = Uvg with U the square root of B, namely B = B1/2BT/2 = UUT or U = B1/2.
Also B�1 = U�TU�1. Then the cost function with respect to the control variable v
becomes

J(v) =
1

2
(v � vg)T(v � vg) +

1

2
(HUv � d)TR�1(HUv � d) (4)

1.4 Solution of Incremental 3DVAR

The minimization of the cost function requires its gradient with respect to v to be zero,
namely

rvJ(v) = (v � vg) +UTHTR�1(HUv � d) = 0 (5)

After minimization, we get the analysis increment va in control variable space,

(I +UTHTR�1HU)va = vg +UTHTR�1d (6)
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• Wish to linearise cost function to simplify minimization and reduce cost

• Define first guess xg and analysis increment dx: x = xg + dx 

• Define innovation vector d = y – H(xg) then cost function can be written

where dxg = xb – xg and H is linearization of nonlinear obs. operator H

• To start, dx = 0 and xg = xb. At end of minimization xg = x (latest analysis)

Incremental formulation of 3DVAR and Outer Loop
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Simplistic Outer Loop Schematic

Perform 
assimilation 

with accepted 
observations

ObservationsFirst guess xg

Compare observations to 
background.  Reject observations 

too far away from the guess.

Updated first 
guess xg=x

The 
outer 
loop

Inner Loop Minimization:
Create new dx, Update x = xg + dx

and re-linearize H



Cost Function/Gradient with 2 outer loops

More observations 
added in the 2nd

outer loop so 
starting cost
function higher

Cost Function J Cost Function Gradient
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• WRFDA-3DVAR: Incremental formulation

• Background error covariance (B) modeling within WRFDA

• Background error covariance (B) estimation: GEN_BE

• Visualizing B: Single Observation Test



Control Variable Transform (dx = U v)

• B is a huge matrix, cannot hope to invert in practice so need to simplify.

• Write B = UUT and dx = U v where v is the control variable

• The cost function can then be written:

• In WRFDA, U = Up Uv Uh where:

– Up is the physical transform, performed via linear regression.

– Uv is the vertical transform, performed via EOF decomposition

– Uh is the horizontal transform, performed via recursive filters.
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• B is square and symmetric

• B is positive semi-definite, eigenvalues are positive 

Properties of B matrix
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cv_options Analysis variables
3 Ψ, unbalanced Χ, unbalanced t, pseudo rh and 

unbalanced log (Ps)
5 Ψ, unbalanced Χ, unbalanced t, pseudo rh and 

unbalanced Ps

6 Ψ and unbalanced Χ, unbalanced t, 
unbalanced pseudo rh and unbalanced Ps

7 u, v, t, pseudo rh, and Ps
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WRFDA Control Variables: Up

• Forecast errors of model space variables (i.e. δx) are typically 
correlated (e.g. wind, pressure).

• Control variables are designed to have NO cross- (multivariate) 
correlations.



Physical Transform Up and its inverse
Up : convert unbalanced field to full field, e.g., for CV5

Up
-1 :  convert full field to unbalanced field

e.g., for CV6

No balance transform for CV7 as
all control variables are full fields

U, V, T, Q/Qs, Ps



Vertical EOF transform: Uv
• Vertical part of B = EΛET

– E: matrix formed by eigenvectors of vertical covariance 
matrix

– Λ: diagonal matrix formed by eigenvalues of vertical 
covariance matrix

• Define Uv = EΛ1/2 

• Inverse transform Uv
-1=Λ-1/2ET

• EOF can be truncated to save cost:
– Default setting in WRFDA: 99% of total eigenvalues 13
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Horizontal Transform: Uh

(1) 2D filter is done by a filter in X-direction, followed by a filter in Y-dir.

(2) namelist rf_passes=6: 3 passes for U, 3 passes for UT (adjoint of U)
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How to estimate B?
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GEN_BE: Perform U inverse transform

17

GEN_BE computes:
1) Balance regression coefficients between analysis variables,
2) Eigenvectors/eigenvalues of vertical covariances, and
3) horizontal correlation length-scales (as a function of EOF mode),
using large enough sample dataset of forecast difference or ensemble



GEN_BE Stage0: Create ‘Standard’ Fields
• Estimate forecast errors using NMC or ensemble method for 

each of the following ‘standard’ fields:

ψ - Stream function 
χ - Velocity potential
T - Temperature
q/qs - Relative humidity
ps - Surface pressure

• Convert (u,v) to vorticity (ζ) and horizontal divergence (D)

• Convert ζ and D to ψ and χ, via solution of Poisson equations:
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D = ∂u
∂x

+ ∂v
∂y

ζ = ∂v
∂x

− ∂u
∂y

∇2ψ = ζ∇2χ = D



GEN_BE Stage1: remove temporal mean

• Computes temporal mean of the forecast error samples 
generated in stage0

• Removes temporal mean to form the perturbations for standard 
fields.

ψ - Stream function 
χ - Velocity potential
T - Temperature
q/qs - Relative humidity
ps - Surface pressure

19



GEN_BE Stage2 & 2a
• Stage2: Computes regression coefficients (i.e., linear correlation 

coefficients) between two variables (M, N, P, Q, R, S below)

• Stage2a: Obtain unbalanced fields by removing the balanced part 
of fields using inverse transform Up-1

• Balance transform Up in matrix form: completes vp = Up
-1 dx

20CV5 CV6



GEN_BE Stage3: EOF of vertical covariances

• Computes vertical covariances for unbalanced 3D fields

• Performs EOF decomposition of vertical covariances to obtain 
eigenvectors and eigenvalues

• Projects unbalanced fields into vertical modes using inverse 
transform: calculates vv = Uv

-1 vp

21



GEN_BE Stage4

• Calculate horizontal error correlation as a function of distance 
between points

• Fit correlation to a Gaussian function with a lengthscale

• Calculate horizontal lengthscale for each component of vv (vertical 
modes of each control variable) simultaneously – parallelism at 
the script level.

22

z(r) = z(0)exp{−r2 / 8s2}

y(r) = 2 2[ln(z(0) / z(r)]
1
2 = r / s
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Up: Multivariate Correlation Example
Correlation between surface 
pressure and balanced 
pressure

Correlation between temp/ and 
balanced temp/potential
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Uv: Leading (First 5) Eigenvectors Example
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Uv: Eigenvalues Example



Vertical Correlation (UvUv
T = EΛET)

27cv_options=5 cv_options=7
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Uh: Horizontal Lengthscales Example



The End Result: Single q Observation Test
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Analysis increments with PSOT-
q

cv_options=5 cv_options=6



Empirical BE Tuning via namelist parameters

• Horizontal component of BE can be tuned with following 
namelist parameters

– LEN_SCALING1  - 5    (Length scaling parameters)
– VAR_SCALING1  - 5    (Variance scaling parameters)

• Vertical component of BE can be tuned with the following 
namelist parameters

– MAX_VERT_VAR1 - 5    (Vertical variance parameters)

30



Impact of Empirical Tuning of B

tuning (len_scaling1 & 2 =0.25)no tuning           
31


