

Algorithm (2): Background Error Modeling and Estimation

Jake Liu¹, **Dale Barker²**

¹National Center for Atmospheric Research ²Met Office, United Kingdom

WRFDA Tutorial, July 2019

Outline

- WRFDA-3DVAR: Incremental formulation
- Background error covariance (B) modeling within WRFDA
- Background error covariance (B) estimation: GEN_BE
- Visualizing B: Single Observation Test

WRFDA-3DVar Equation

$$J(\mathbf{x}) = \frac{1}{2} (\mathbf{x} - \mathbf{x}^b)^{\mathrm{T}} \mathbf{B}^{-1} (\mathbf{x} - \mathbf{x}^b) + \frac{1}{2} [H(\mathbf{x}) - \mathbf{y}]^{\mathrm{T}} \mathbf{R}^{-1} [H(\mathbf{x}) - \mathbf{y}]$$

 $J(\mathbf{x})$: Scalar cost function

- x: The analysis: what we' re trying to find!
- x^b: Background field (previous forecast)
- B: Background error covariance matrix
- y: Observations
- *H*: Observation operator: computes model-simulated obs
- R: Observation error covariance matrix

However, this cost function is not really what WRFDA uses!

Incremental formulation of 3DVAR and Outer Loop

$$J(\mathbf{x}) = \frac{1}{2} (\mathbf{x} - \mathbf{x}^b)^{\mathrm{T}} \mathbf{B}^{-1} (\mathbf{x} - \mathbf{x}^b) + \frac{1}{2} [H(\mathbf{x}) - \mathbf{y}]^{\mathrm{T}} \mathbf{R}^{-1} [H(\mathbf{x}) - \mathbf{y}]$$

- Wish to linearise cost function to simplify minimization and reduce cost
- Define first guess x^g and analysis increment δx : $x = x^g + \delta x$
- Define innovation vector $d = y H(x^g)$ then cost function can be written

$$J(\delta \mathbf{x}) = \frac{1}{2} (\delta \mathbf{x} - \delta \mathbf{x}^g)^{\mathrm{T}} \mathbf{B}^{-1} (\delta \mathbf{x} - \delta \mathbf{x}^g) + \frac{1}{2} (\mathbf{H} \delta \mathbf{x} - \mathbf{d})^{\mathrm{T}} \mathbf{R}^{-1} (\mathbf{H} \delta \mathbf{x} - \mathbf{d})$$

where $\delta x^g = x^b - x^g$ and H is linearization of nonlinear obs. operator H

• To start, $\delta x = 0$ and $x^g = x^b$. At end of minimization $x^g = x$ (latest analysis)

Simplistic Outer Loop Schematic

Cost Function/Gradient with 2 outer loops

Outline

- WRFDA-3DVAR: Incremental formulation
- Background error covariance (B) modeling within WRFDA
- Background error covariance (B) estimation: GEN_BE
- Visualizing B: Single Observation Test

Control Variable Transform ($\delta x = U v$)

$$J(\delta \mathbf{x}) = \frac{1}{2} (\delta \mathbf{x} - \delta \mathbf{x}^g)^{\mathrm{T}} \mathbf{B}^{-1} (\delta \mathbf{x} - \delta \mathbf{x}^g) + \frac{1}{2} (\mathbf{H} \delta \mathbf{x} - \mathbf{d})^{\mathrm{T}} \mathbf{R}^{-1} (\mathbf{H} \delta \mathbf{x} - \mathbf{d})$$

- B is a huge matrix, cannot hope to invert in practice so need to simplify.
- Write $B = UU^T$ and $\delta x = U v$ where v is the **control variable**
- The cost function can then be written:

$$J(\mathbf{v}) = \frac{1}{2} (\mathbf{v} - \mathbf{v}^g)^{\mathrm{T}} (\mathbf{v} - \mathbf{v}^g) + \frac{1}{2} (\mathbf{H}\mathbf{U}\mathbf{v} - \mathbf{d})^{\mathrm{T}}\mathbf{R}^{-1} (\mathbf{H}\mathbf{U}\mathbf{v} - \mathbf{d})$$

• In WRFDA, $U = U_p U_v U_h$ where:

 $- U_p$ is the physical transform, performed via linear regression.

- $U_{\rm v}$ is the vertical transform, performed via EOF decomposition
- $-\,\mathrm{U}_{\mathrm{h}}$ is the horizontal transform, performed via recursive filters.

Properties of B matrix

- B is square and symmetric
- B is positive semi-definite, eigenvalues are positive

Background Error: Covariance Modeling

WRFDA Control Variables: Up

cv_options	Analysis variables
3	Ψ , unbalanced X, unbalanced t, pseudo rh and unbalanced log (P _s)
5	Ψ , unbalanced X, unbalanced t, pseudo rh and unbalanced P _s
6	Ψ and unbalanced X, unbalanced t, unbalanced pseudo rh and unbalanced P _s
7	u, v, t, pseudo rh, and Ps

- Forecast errors of model space variables (i.e. δx) are typically correlated (e.g. wind, pressure).
- Control variables are designed to have NO cross- (*multivariate*) correlations.

Physical Transform U_p and its inverse

U_p: convert unbalanced field to full field, e.g., for CV5

- Velocity potential/streamfunction regression: $\chi_b(k) = c(k)\psi(k)$;
- Temperature/streamfunction regression: $T_b(k) = \sum_{k1} G(k1, k) \psi(k1)$; and
- Surface pressure/streamfunction regression: $p_{sb} = \sum_{k1} W(k1)\psi(k1)$.

e.g., **for CV6**

U_p⁻¹: convert full field to unbalanced field

$$\boldsymbol{\chi}_{\mathrm{u}}(i,j,k) = \boldsymbol{\chi}(i,j,k) - \alpha_{\psi\chi}(i,j,k)\boldsymbol{\psi}(i,j,k)$$
(7)

$$T_{u}(i,j,k) = T(i,j,k) - \sum_{l=1}^{N_{k}} \alpha_{\psi T}(i,j,k,l)\psi(i,j,l) \\ - \sum_{l=1}^{N_{k}} \alpha_{\chi_{u}T}(i,j,k,l)\chi_{u}(i,j,l)$$
(8)

N

$$ps_{u}(i,j) = ps(i,j) - \sum_{l=1}^{n} \alpha_{\psi ps}(i,j,l)\psi(i,j,l) - \sum_{l=1}^{N_{k}} \alpha_{\chi_{u} ps}(i,j,l)\chi_{u}(i,j,l) rh_{u}(i,j,k) = rh(i,j,k) - \sum_{l=1}^{N_{k}} \alpha_{\psi rh}(i,j,k,l)\psi(i,j,l) - \sum_{l=1}^{N_{k}} \alpha_{\chi_{u} rh}(i,j,k,l)\chi_{u}(i,j,l)$$
(9)

 $-\sum_{i=1}^{N_k} \alpha_{\mathrm{T_urh}}(i,j,k,l) T_{\mathrm{u}}(i,j,l) - \alpha_{\mathrm{ps_urh}}(i,j,k) ps_{\mathrm{u}}(i,j)$

Vertical EOF transform: U_v

- Vertical part of $B = E \Lambda E^T$
 - E: matrix formed by eigenvectors of vertical covariance matrix
 - $-\Lambda$: diagonal matrix formed by eigenvalues of vertical covariance matrix
- Define $U_v = E\Lambda^{1/2}$
- Inverse transform $U_v^{-1} = \Lambda^{-1/2} E^T$
- EOF can be truncated to save cost:
 Default setting in WRFDA: 99% of total eigenvalues

Horizontal Transform: U_h

3.1 Recursive Filter

For one-dimensional n grid points, one pass filter is a right-moving recursive filter

$$B_i = \alpha B_{i-1} + (1 - \alpha)A_i, i = 1, ..., n$$
(21)

followed by a left-moving recursive filter

$$C_i = \alpha C_{i+1} + (1 - \alpha)B_i, i = n, ..., 1$$
(22)

Inverse filter is non-recursive

$$A_{i} = C_{i} - \frac{\alpha}{(1-\alpha)^{2}} (C_{i-1} - 2C_{i} + C_{i+1})$$
(23)

Infinite-pass recursive filter is equivalent to the convolution of a Gaussian covariance function with unfiltered field. U is $\frac{N}{2}$ -pass recursive filter with N the total number of passes. Need boundary condition B_0 and C_{n+1} . α is calculated according to the horizontal correlation length-scale.

(1) 2D filter is done by a filter in X-direction, followed by a filter in Y-dir.

(2) namelist rf_passes=6: 3 passes for U, 3 passes for U^{T} (adjoint of U)

Outline

- WRFDA-3DVAR: Incremental formulation
- Background error covariance (B) modeling within WRFDA
- Background error covariance (B) estimation: GEN_BE
- Visualizing B: Single Observation Test

How to estimate B?

• The background error covariance matrix is defined as

$$\mathbf{B} = \langle \varepsilon \varepsilon^{\mathrm{T}} \rangle = \langle (\mathbf{x} - \mathbf{x}^{\mathrm{t}}) (\mathbf{x} - \mathbf{x}^{\mathrm{t}})^{\mathrm{T}} \rangle$$

- Where ε is the forecast error and x^t the truth (which we do not know).
- In practice, we approximate $x x^t$ by one of two methods:
 - NMC-method: $\mathbf{x} \mathbf{x}^t = \mathbf{x}^{t1} \mathbf{x}^{t2}$ the difference between two forecasts valid at the same time.
 - Ensemble technique: $x x^t = x^{ens} \langle x^{ens} \rangle$ a set of ensemble perturbations from an ensemble forecasting system.

GEN_BE: Perform U inverse transform

GEN_BE computes:

- 1) Balance regression coefficients between analysis variables,
- 2) Eigenvectors/eigenvalues of vertical covariances, and
- 3) horizontal correlation length-scales (as a function of EOF mode),

using large enough sample dataset of forecast difference or ensemble

GEN_BE Stage0: Create 'Standard' Fields

- Estimate forecast errors using NMC or ensemble method for each of the following 'standard' fields:
 - ψ Stream function
 - χ Velocity potential
 - T Temperature
 - $q/q_{\rm s}\,$ Relative humidity
 - p_{s} $\,$ Surface pressure
- Convert (u,v) to vorticity (ζ) and horizontal divergence (D)

$$\zeta = \frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \qquad \qquad D = \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}$$

- Convert ζ and D to ψ and $\chi,$ via solution of Poisson equations:

$$\nabla^2 \chi = D \qquad \nabla^2 \psi = \zeta$$

GEN_BE Stage1: remove temporal mean

- Computes temporal mean of the forecast error samples generated in stage0
- Removes temporal mean to form the perturbations for standard fields.
 - ψ Stream function
 - χ Velocity potential
 - T Temperature
 - q/q_s Relative humidity
 - p_s Surface pressure

GEN_BE Stage2 & 2a

- Stage2: Computes regression coefficients (i.e., linear correlation coefficients) between two variables (M, N, P, Q, R, S below)
- Stage2a: Obtain unbalanced fields by removing the balanced part of fields using inverse transform Up⁻¹
- Balance transform U_p in matrix form: completes $v_p = U_p^{-1} dx$

$$\begin{pmatrix} \Psi \\ \chi \\ t \\ Ps \\ rh \end{pmatrix} = \begin{pmatrix} I & 0 & 0 & 0 & 0 \\ M & I & 0 & 0 & 0 \\ N & 0 & I & 0 & 0 \\ Q & 0 & 0 & I & 0 \\ 0 & 0 & 0 & 0 & I \end{pmatrix} \begin{pmatrix} \psi \\ \chi \\ u \\ t_u \\ Ps_u \\ rh \end{pmatrix} + \begin{pmatrix} \Psi \\ \chi \\ t \\ Ps \\ rh \end{pmatrix} = \begin{pmatrix} I & 0 & 0 & 0 & 0 \\ M & I & 0 & 0 & 0 \\ N & P & I & 0 & 0 \\ Q & R & 0 & I & 0 \\ S_1 & S_2 S_3 S_4 & I \end{pmatrix} \begin{pmatrix} \psi \\ \chi \\ u \\ t_u \\ Ps_u \\ rh_u \end{pmatrix}$$

CV6

GEN_BE Stage3: EOF of vertical covariances

- Computes vertical covariances for unbalanced 3D fields
- Performs EOF decomposition of vertical covariances to obtain eigenvectors and eigenvalues
- Projects unbalanced fields into vertical modes using inverse transform: calculates $v_v = U_v^{-1} v_p$

GEN_BE Stage4

- Calculate horizontal error correlation as a function of distance between points
- Fit correlation to a Gaussian function with a lengthscale

$$z(r) = z(0) \exp\{-r^2 / 8s^2\}$$

$$y(r) = 2\sqrt{2} [\ln(z(0) / z(r))]^{\frac{1}{2}} = r / s$$

Calculate horizontal lengthscale for each component of v_v (vertical modes of each control variable) simultaneously – parallelism at the script level.

Outline

- WRFDA-3DVAR: Incremental formulation
- Background error covariance (B) modeling within WRFDA
- Background error covariance (B) estimation: GEN_BE
- Visualizing B: Single Observation Test

Up: Multivariate Correlation Example

Correlation between surface Correlation between temp/ and pressure and balanced balanced temp/potential pressure $p_{sb} = \sum_{k1} W(k1)\psi(k1)$. $\chi_b(k) = c(k)\psi(k)$ $T_b(k) = \sum_{k1} G(k1, k) \psi(k1)$ Ps b.Ps b Correlation 40 1.0 0.8 chi 30 Model Level 0.6 Correlation 20 0.4 10 0.2 0.0 20 30 40 50 10 0.2 0.0 0.4 0.6 0.8 1.0 Grid j <xb . xb> / <x . x>

24

Uv: Leading (First 5) Eigenvectors Example

Uv: Eigenvalues Example

Vertical Correlation ($U_v U_v^T = E \Lambda E^T$)

cv_options=7

cv_options=5

Uh: Horizontal Lengthscales Example

The End Result: Single q Observation Test

Empirical BE Tuning via namelist parameters

- Horizontal component of BE can be tuned with following namelist parameters
 - LEN_SCALING1 5 (Length scaling parameters)
 - VAR_SCALING1 5 (Variance scaling parameters)
- Vertical component of BE can be tuned with the following namelist parameters

MAX_VERT_VAR1 - 5 (Vertical variance parameters)

Impact of Empirical Tuning of B

tuning (len_scaling1 & 2 =0.25)

no tuning