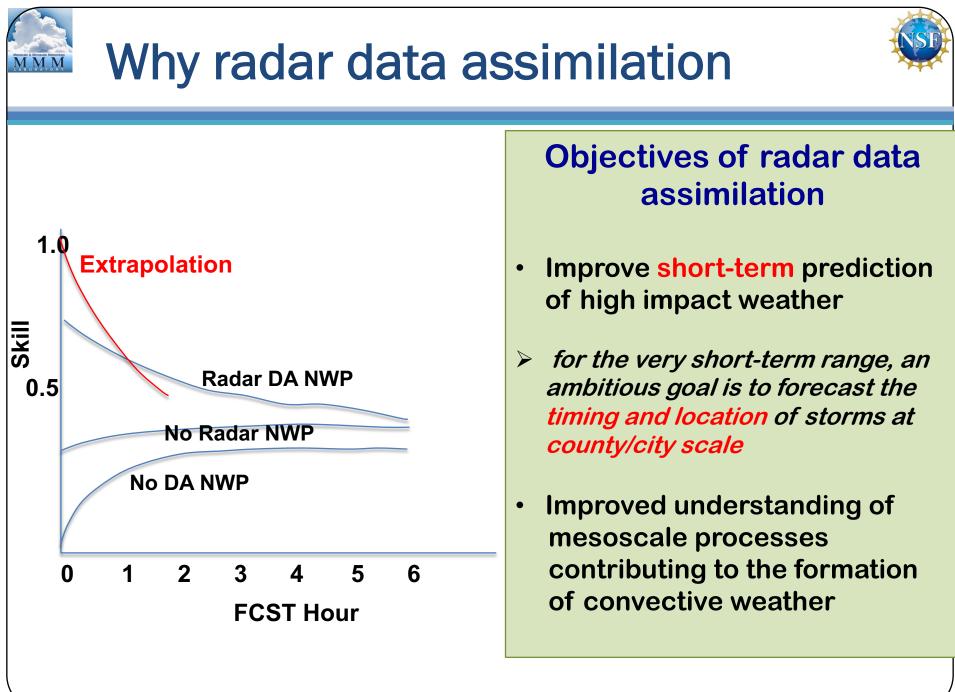


Radar Data Assimilation with WRFDA

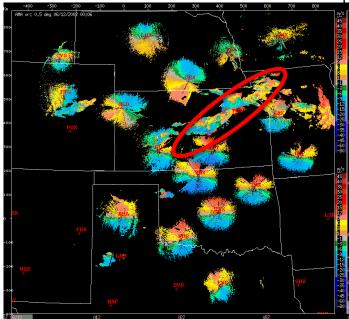
Juanzhen Sun

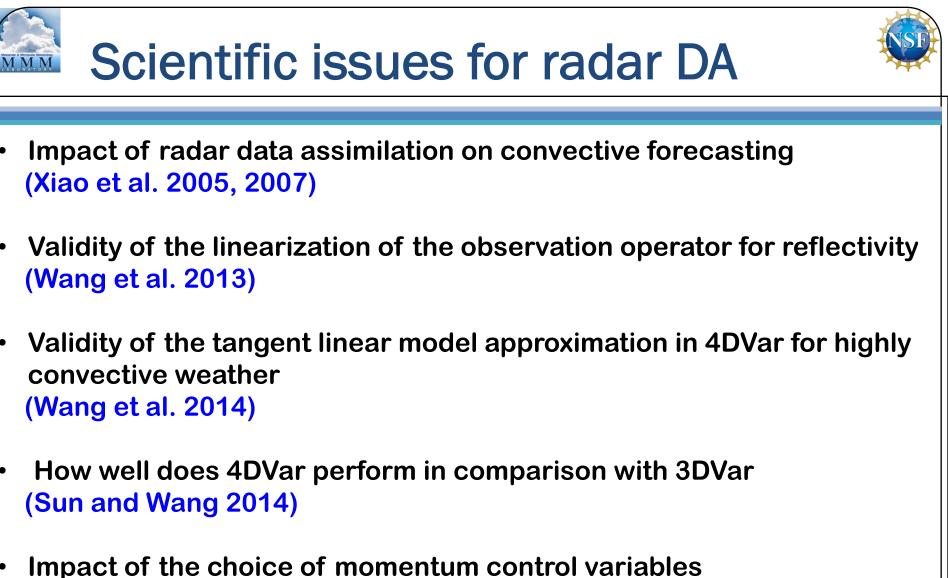

July 22–24, 2019, Boulder, CO

OUTLINE

- Motivation, milestones, and current capabilities
- Radar DA method in WRFDA
- Configure and run WRFDA-radar
- Combined assimilation of radar and rainfall
- Ongoing research

Radar data: the good and the bad


Good


- High spatial and temporal resolutions at convective-scale
- Observes wind (radial velocity) as well as microphysics (reflectivity)
- Accurate observations
- Observations are mostly in the lower atmosphere

Not so good

- Indirect observations need observation operators
- Incomplete coverage limited range and limited detection ability in clear air
- Only radial velocity and reflectivity
- Nontrivial for QC users responsibility
- Locally available

Radial velocities from 20 WSR-88D radars

- Impact of the choice of momentum control variables (Sun et al 2016)
- Controlling noise in high-resolution analysis with multi-scale balance (Vendrasco et al. 2016, Tong et al. 2017)

- 2005: radial velocity data assimilation with WRFDA 3DVar (Xiao et al. 2005)
 2007: reflectivity data assimilation using a partition scheme to obtain microphysics (Xiao et al. 2007)
- 2013: indirect assimilation of reflectivity using q_r and q_c as control variables (Wang et al. 2013)
- 2014: adjoint of Kessler scheme for 4DVar radar data assimilation (Wang et al. 2014)
- 2015: new momentum control variables (u/v) for radar data assimilation (Sun et al. 2016)
- 2015: a large-scale analysis constraint to maintain large-scale balance (Vendrasco et al. 2016)
- **2017:** a strategy for hourly update cycles (Tong et al. 2017)
- 2017: a scheme for assimilating "no rain" reflectivity data (Gao et al. 2018)
- **2018-:** Developments of cloud BE, dynamic blending scheme, and MRI

Current capabilities

3DVar

- Assimilate both radial velocity and reflectivity
- Direct and Indirect assimilation of reflectivity
- "Warm start" by assimilating estimated humidity within cloud
- Options for choice of momentum control variables
- Constraint terms (Jc) for controlling analysis noise LSAC and DIVC
- Assimilate low reflectivity echoes (or "no-rain" data)
- Operational 3h/1h cycles since 2014

4DVar

- Use WRF tangent linear model as constraint with multiple outer loops
- Adjoint of physics schemes: modified Kessler microphysics, largescale condensation, a simple cumulus scheme, and diffusion scheme
- Assimilate both radar and rainfall data
- 4DVar framework is fully consistent with 3DVar
- Multi-resolution incremental scheme applicable to radar DA

OUTLINE

- Motivation, milestones, and current capabilities
- Radar DA method in WRFDA
- Configure and run WRFDA-radar
- Combined assimilation of radar and rainfall
- Application examples and ongoing research

Two methods for reflectivity DA

- 1. Direct assimilation of reflectivity (Xiao et al. 2007)
 - An empirical reflectivity observation operator to link reflectivity with rain water
 - Total liquid water is used as microphysics control variable
 - A warm rain partition scheme used to partition the total water
 - Vertical velocity is diagnosed using the Richardson equation
 - A new and improved direct method considering ice is being developed (Wang et al. 2019)
 - 2. Indirect assimilation of reflectivity (Wang et al. 2013, most used)
 - Diagnose microphysics (qr, qs, qg) and humidity from reflectivity (Gao and Stensrud 2012)
 - Assimilate the diagnosed quantities
 - Cloud control variables and vertical velocity control variable
 - Assimilate low reflectivity echoes

Cost Function

Indirect method with cloud control variables

$$J = J_b + J_o + J_{v_r} + J_{q_r} + J_{q_v}$$

For radar DA

• Control variables : u/v (or ψ/χ_{u}), T (or T_u), Ps (or Ps_u), RHs, q_c, q_r, and w

- 3DVar critically depends on a cloud analysis scheme that assimilates estimated in-cloud humidity
- A modified Kessler scheme along with its adjoint produces analyses of microphysics in 4DVar

Radial velocity observation operators

$$J_{vr} = \frac{1}{2} \sum (V_r - V_r^{ob})^2 / \sigma_{vr}$$

- V_r Radial velocity from the model V_r^{ob} Radial velocity observations
- $\sigma_{_{_{\it V\!F}}}$ Observation error variance

v_r - (u, v, w, q_r) Relation:

$$v_{r} = \frac{x - x_{r}}{r}u + \frac{y - y_{r}}{r}v + \frac{z - z_{r}}{r}(w - V_{T}(q_{r}))$$

Reflectivity observation operator

$$J_{qr} = \frac{1}{2} \sum (q_r - q_r^{ob})^2 / \sigma_{qr}$$

- q_r^{ob} Estimated rainwater mixing ratio from reflectivity
- $\sigma_{\it qr}$ Observation error variance

*Z-q_r*Relation (assume Marshal-Palmer DSD)

$$Z = 43.1 + 17.5 \log_{10}(
ho q_r)$$
 Sun and Crook (1997)

Z-q_s and Z-q_h follow Gao and Stensrud (2012)

Pseudo humidity assimilation

$$J_{qv} = \frac{1}{2} \sum (q_v - q_v^{ob})^2 / \sigma_{qv}$$

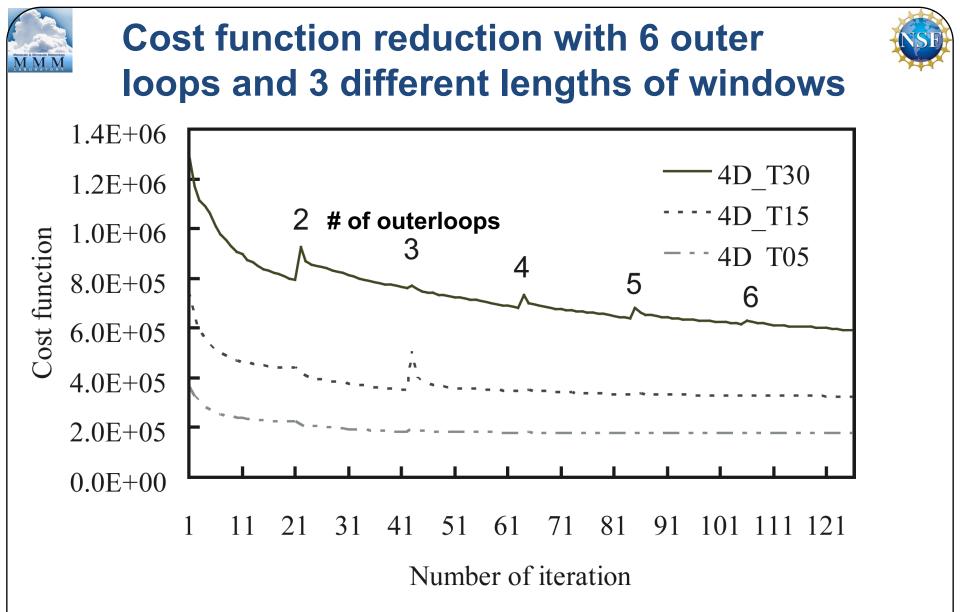
 q_v Model water vapor mixing ratio

- q_v^{ob} Estimated water vapor mixing ratio by assuming near saturation above LCL within cloud
- σ_{av} Observation error variance

Namelist options:

cloudbase_calc_opt

Option for calculating cloud-base height: below this height retrieved humidity will not be assimilated for the use_radar_rqv option


0: fixed value of 1500 meters 1 (default): KNU scheme 2: NCAR scheme **radar_saturated_rf** rf value (dBz) used to indicate precipitation for rqv (default 25.0)

NSF

WRFDA uses a multi-incremental formulation, meaning

- The forward prediction model within the 4DVar window is an approximation of the nonlinear model
- The control variables are increments from the forward model trajectory
- The formulation requires the update of analysis increment in an inner loop but also the update of the nonlinear model in an outer loop
- It makes the cost function better conditioned and allows different spatial resolutions for the inner and outer loops – multi-incremental, but does it work for severe convection?

The longer window length (30 min) shows stronger rebounds at outer loop updates, but the cost function is steadily reduced, indicating the tangent linear forward operator is a good approximation of the nonlinear model

	WRFTL & AD	WRFNL			
mp. physics	mp_physics_ad=98 Large scale condensation	mp_physics can be set to an options for WRF			
mp_physics	Mp_physics_ad=99 Modified Kessler scheme	It can also be set to 98 or 99, same as WRFTL & AD			
cu_physics	cu_physics = 0: no cumulus scheme cu_physics=98: Simplified CU scheme	Same as the left column			
	Any other numbers will be Defauted to 98				

OUTLINE

- Motivation, milestones, and current capabilities
- Radar DA method in WRFDA
- Configure and run WRFDA-radar
- Combined assimilation of radar and rainfall
- Ongoing research

Radar DA options in Namelist

- Read radar data use_radarobs = true,
- Assimilate radial velocity use radar rv=true,
- Two methods for reflectivity assimilation use_radar_rf =true; (direct method; Xiao et al. 2007) use_radar_rhv=true; (indirect method; Wang et al. 2013)
- Assimilate pseudo humidity use_radar_rqv=true,
- 3DVar (default) or 4DVar var4d=true
- Microphysics control variables
 cloud_cv_options = 3 BE of regular variables are from gen_be; cloud variables hard coded
- u/v momentum control variables

cv_options = 7 5: psi/chi CV 7: u/v CV (7 is recommended for radar)

- Several options for assimilating weak radar echoes "no rain" data See the user guide
- Options for LSAC DIVC constraints See the user guide

M M M

Basic steps for radar DA

Step 1: prepare radar data in the correct format and write the data into ob.radar (ob01.radar, ob01.radar, ... for 4DVar)

- Use your own QC software
- $(\phi, r, \theta) \Rightarrow (x, y, \theta) \Rightarrow Lat/lon profiles \Rightarrow$ merge the radars into one file

Step 2: produce 1-3 month WRF forecasts (12h & 24h) over the study domain, and then compute BE using the WRFDA utility **gen_be**

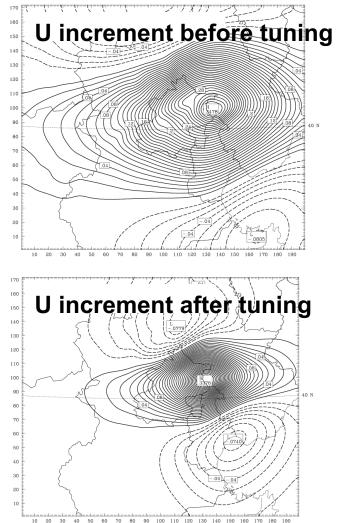
Step 3: modify the namelist.input to make radar DA choices

Step 4: conduct single observation tests to tune the length scale and variance for your specific domain

- 100-200km for GTS data and 30km for radar data are commonly used (Tong et al. 2016, two-step procedure)

Step 5: configure WRFDA: to invoke the "CLOUD_CV" option, do the following in the configure script setenv CLOUD_CV 1 - for csh Export CLOUD_CV = 1 - for both ksh and bash

STEP 6: link ob.radar and other other observation files and first guess



Tuning BES parameters

To change BES variance and length scale, do the following

in your namelist.input: To decrease the weight of the background VAR SCALING1=2.0 VAR SCALING2=2.0 VAR SCALING3=2.0 VAR SCALING4=2.0 VAR SCALING5=2.0 To decrease the length scale LEN SCALING1=0.5 LEN SCALING2=0.5 LEN SCALING3=0.5 LEN SCALING4=0.5 LEN SCALING5=0.5

Data format


```
write(301, '(a14, i3)') 'Total number =', nrad
write(301,'(a)')
'#-----#'
write(301,'(a)') '
do irad = 1, nrad ! nrad: total # of radar
!---Write header
write(301,'(a5,2x,a12,2(f8.3,2x),f8.1,2x,a19,2i6)') 'RADAR', &
radar_name, rlonr(irad), rlatr(irad), raltr(irad)*1000.,
                                                       &
trim(radar_date), np, imdv_nz(irad) write(301,'(a)') &
                                                             '#-----
-----#'
write(301,*)
!----Write data
do i = 1,np ! np: # of total horizontal data points
write(301,'(a12,3x,a19,2x,2(f12.3,2x),f8.1,2x,i6)') 'FM-128 RADAR', &
trim(radar_date), plat(i), plon(i), raltr(irad)*1000, count_nz(i)
 do m = 1,count_nz(i) ! count_nz(i): # of vertical elevitions for each radar
write(301,'(3x,f12.1,2(f12.3,i4,f12.3,2x))') hgt(i,m), &
rv_data(i,m), rv_qc(i,m), rv_err(i,m),
                                         &
rf_data(i,m), rf_qc(i,m), rf_err(i,m)
enddo
enddo
enddo
```

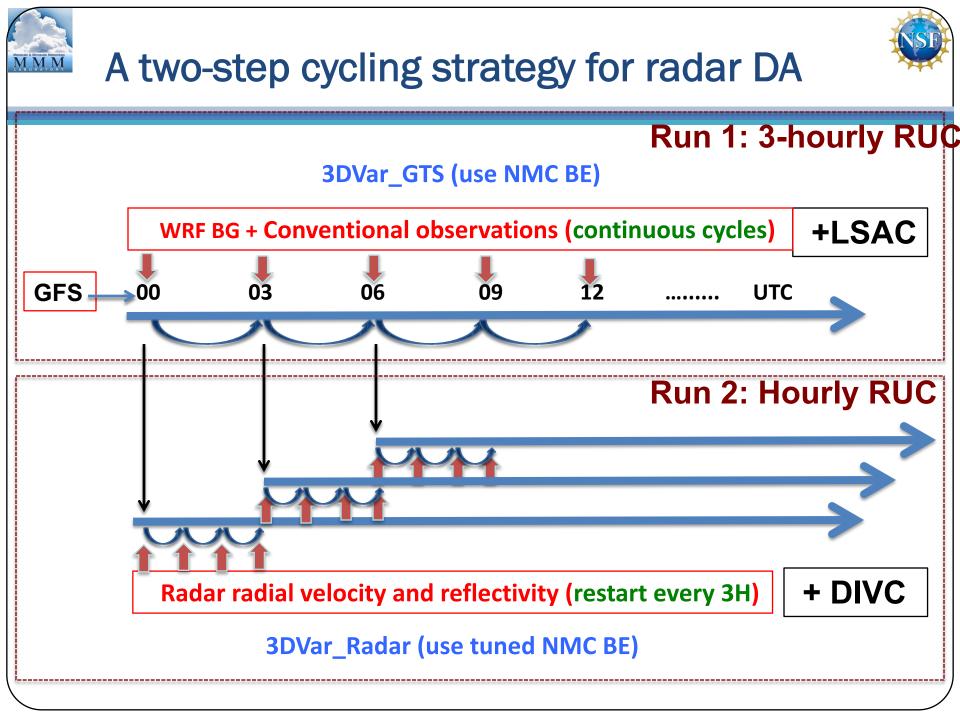

Data format

Header

nrad: total number of radars
radar_name: name of the ith radar (irad)
rlonr, rlatr, raltr: longitude, latitude, and altitude of irad
radar_date: date of irad observation
np: number of total data points for irad
imdv_nz: number of total elevation angles of irad

Data

plat, plon, raltr: longitude, latitude, and altitude of the ith data point
count_nz: number of data levels at the ith data point
hgt(i,m): height of ith data point at m level
rv_data(i,m), rv_qc(i,m), rv_err(i,m): radial velocity value, qc index, and
obs error. The qc index >= 0 means good data; otherwise bad data.
rf_data(i,m), rf_qc(i,m), rf_err(i,m): reflectivity value, qc index, and obs
error

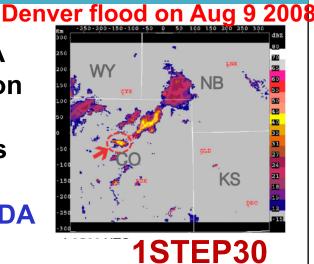


Example of radar input data

∎OTAL NUMBER = 16 #-----#

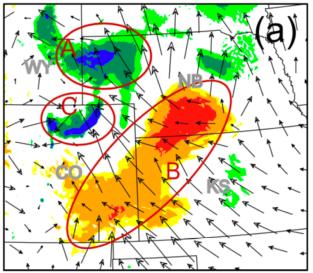
RADAR	KCYS	-104,806			2015-07-07	_21:00	2:00	5497
#					#	•		
FM-128	RADAR 24	015-07-07_21:	00:00	41.165	-107.	189	1887	.0
		-888888.000 -						
		-888888,000 -				Ó	0.9	944
		-888888.000 -						
FM-128	RADAR 2	015-07-07_21:	00:00	41.192	-107.	189	1887	.0
		-888888,000 -			10,262			
		-7,381			13.338	0	0.4	473
	6872.5	-888888,000 -	88 -888888	.000	8,373	0	0,0	626
FM-128	RADAR 20	015-07-07_21:	00:00	41,219	-107.	189	1887.	.0
	3740.0 ·	-888888,000 -	88 -888888	.000	9.447	0	1.0	
	5133.9	-8,476	0 1	. 632	12,828	0	0.0	833
		-888888,000 -						991
FM-128		015-07-07_21:						
		-888888,000 -			12,750		1.9	918
		-888888,000 -			15,127		0.9	
		-888888,000 -			11,409	0		
FM-128		015-07-07_21:						
		-888888,000 -			11.011			
		-888888,000 -			12,650		0.0	
		-888888,000 -		•	•	0	1.	287
FM-128		015-07-07_21:						
		-888888:000 -			11.477		0.0	
		-5,278					0.9	
	6732.4	-888888,000 -	88 -888888	.000	9,280	0	2.0	035
FM-128	RADAR 24	015-07-07_21: -0,267	00:00	41,192	-107.	153	1887	•0
	3646.4	-0,267	0 4	.448	11,606	0	1.	225
		-5,217			14,294	0	0.	731
	6734.5	-888888,000 -	88 -888888	.000	10.094	0	2.0	072

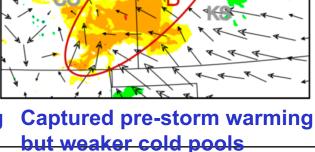
NSF


2STEP: 30km length scale for the 2st step radar DA

1STEP200: 200km length scale for all observations

1STEP30: 30km length scale for all observations

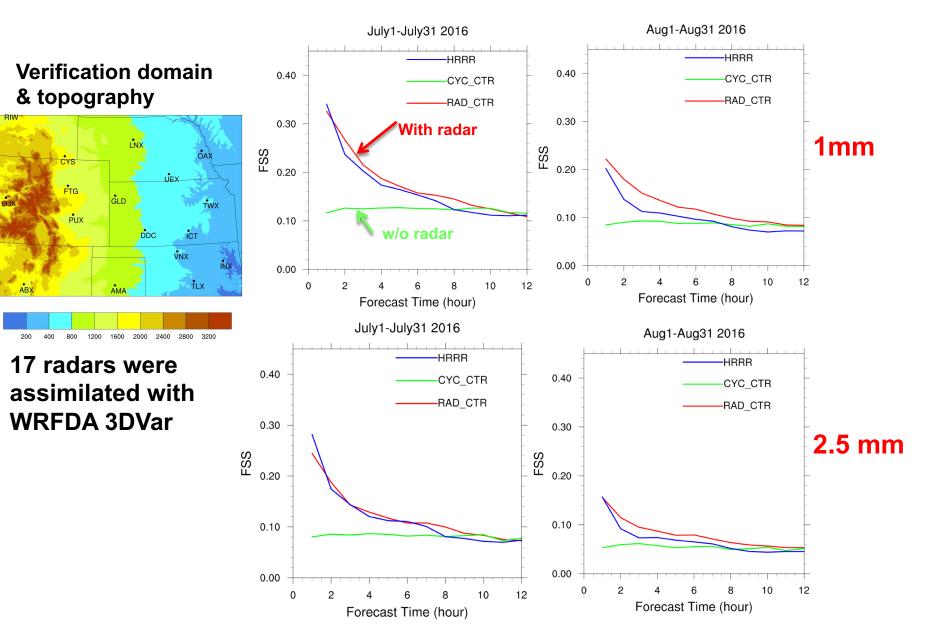

and **200km** length scale for the 1st step assimilation

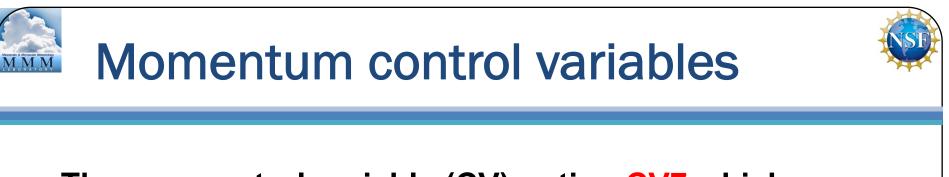


2STEP

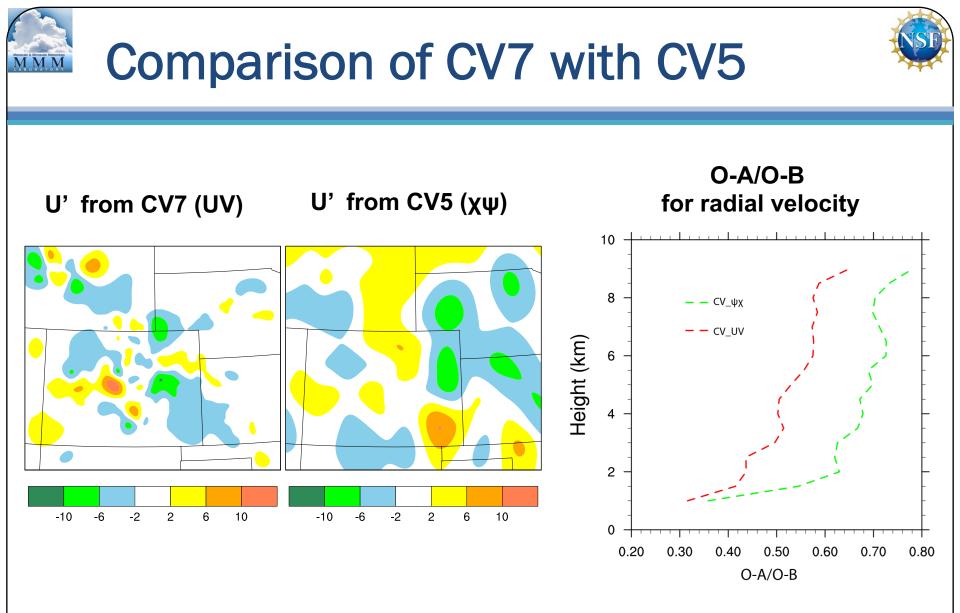
of all other observations

Captured both in-storm cooling and pre-storm warming


Temperature increment after DA

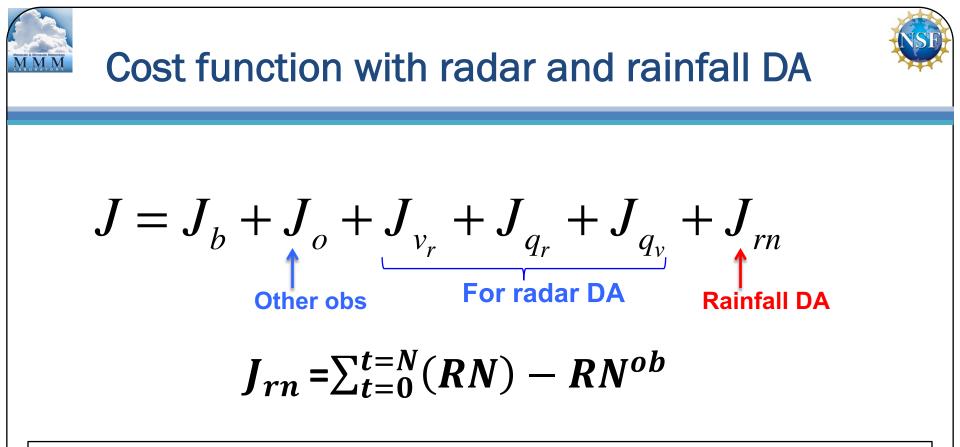

1STEP200

Captured cold pools well but weak pre-storm warming



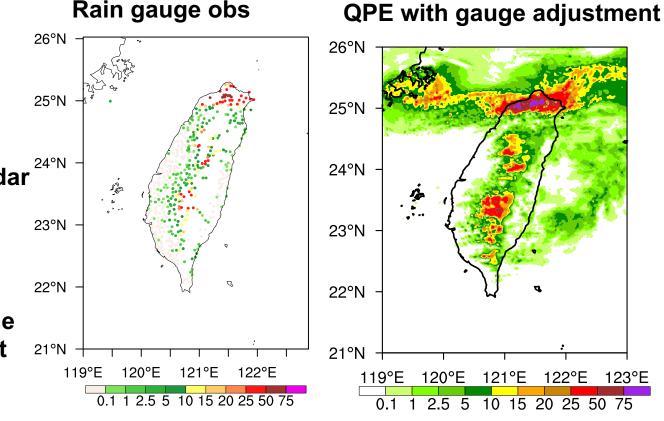
Impact of radar data assimilation Verified against QPE (MRMS) during July and Aug 2016

- The new control variable (CV) option CV7 which uses u/v instead of psi/chi as momentum control variables has been added since WRFDA3.7
- CV7 requires the computation of BES of u and v
- In the current version, correlation between variables is not considered
- But a divergence constraint (DIVC) is included in the cost function to force some correlation between u and v
- See Sun et al. (2016) and Tong et al. (2017)

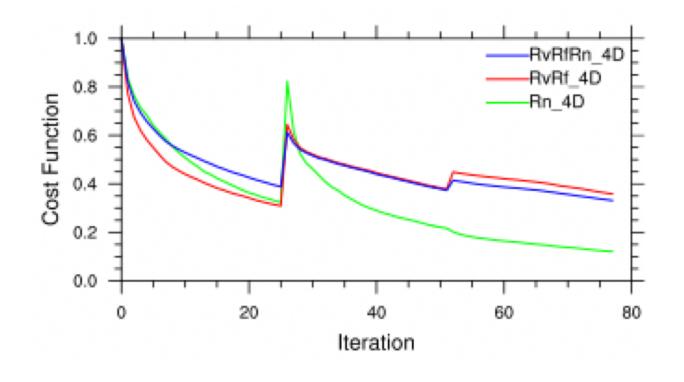

• CV7 produces increments with small-scale details and it allows a closer fit to radar observations

OUTLINE

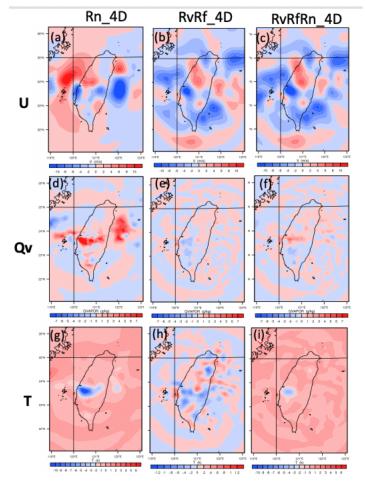
- Motivation, milestones, and current capabilities
- Radar DA method in WRFDA
- Configure and run WRFDA-radar
- Combined assimilation of radar and rainfall
- Ongoing research

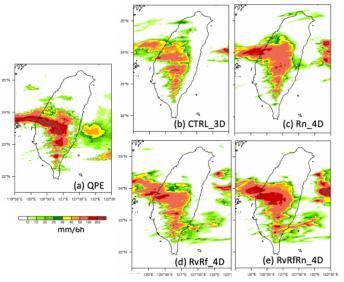

- The temporal window in 4DVAR makes it feasible for assimilating temporally accumulated quantity such as rainfall
- It does not require ad-hoc adjustment of moisture or latent heat because of the adjoint of model microphysics
- Both radar and rainfall should use a short 4DVAr window (<30 min) in order to resolve severe convection

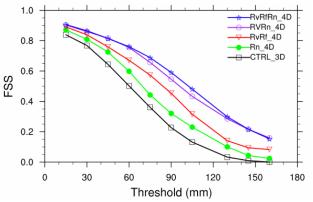
Rain gauge or radar QPE?


- Rain gauge obs is considered more accurate, but
- its spatial coverage
 is much poorer than
 radar data, so it can
 be outweighed by radar
 in the cost function
 minimization
- The gridded QPE product has the same order of data amount as radar data; so a better choice in this regard

Rn_4D: rainfall DA with 4DVar RvRf_4D: radar DA with 4DVar RvRfRn_4D: combined DA with 4DVar CTRL_3D: Background for the above experiments




Comparing increments and 6h rainfall forecasts


Analysis increments

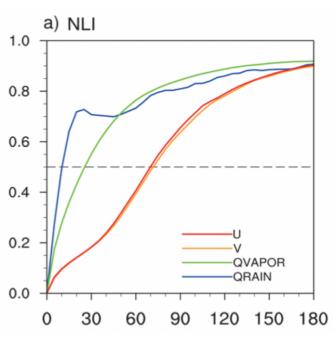
Forecasts of 6h accumulated rainfall

Rainfall fcst verification

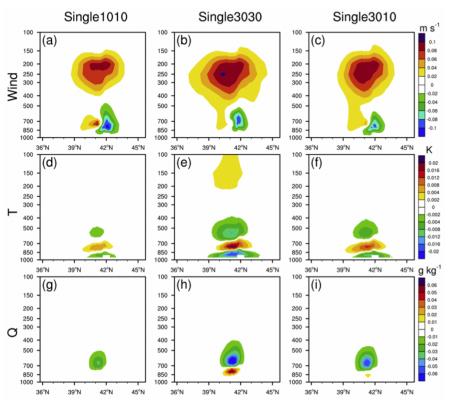
- Improve flow-dependent BE using the ensemble method
 - Application of WRFDA hybrid-3DVar to radar data assimilation
 - Benefit of using EnKF to update perturbation (En3DVar vs. 3DEnVar)

Multi-timescale 4DVar

- A shorter 4DVar window for reflectivity and longer window for radial velocity because nonlinear errors of microphysics grow much faster

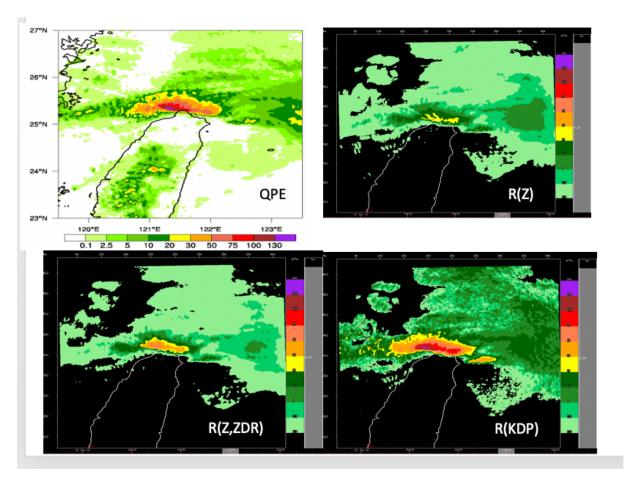

Dual-pol radar data assimilation

- Developing schemes for both direct and indirect methods



Single1010: use 10min window for both radial wind and reflectivity Single3030: use 30min window for both Single3010: use 30min for wind and 10min window for reflectivity

Nonlinea Error Growth


Single obs tests

Dual-pol data assimilation

Improved rainfall estimate with dual-pol observation can potentially Improve convective-scale initial analysis

