

Research, which is a major facility sponsored by the National Science Foundation under Cooperative Agreement No. 1852977.

Introduction to Nesting

Kelly Werner, NCAR/MMM

What is a Nest?

- A finer-resolution domain embedded in a coarser-resolution domain, and run together with the coarse domain
- Driven along its lateral boundaries by the parent domain

When should I use a nest?

Do you need to simulate localized phenomena (e.g., convection)?

• What size area do you need to fully include the phenomena?

What resolution is necessary to resolve what you are interested in?

What is the resolution of the input data?

• Input data resolution is too coarse by more than a factor of ~5x the domain resolution

What computing resources are available?

• Computing resources not available for uniform coverage

Coarse vs. Fine Landuse Resolution over Large Domain

Two-way Nesting

Determined by the namelist parameter "feedback" feedback = 1 (turned on/two-way)

(1) Lateral boundary conditions are fed to the nest, from the parent.

(2) Child values are averaged, and then sent back to parent to overwrite value at corresponding grid point

One-way Nesting

feedback = 0 (turned off/one-way)

Lateral boundary conditions are fed to the nest, from the parent.

Masked Feedback

Single grid value feedback for categorical and masked data

Compliant Nest Set-ups

Non-compliant Nest Setups

Child domains *may not* have overlapping points in the parent domain (possible if Feedback is off).

Solution to Nest Overlapping Problem (1)

It's best to combine domains to create a single large fine-resolution nested domain

Special Nesting Options

Specified move

Compile for nesting? (1=basic, 2=preset moves, 3=vortex following) [default 1]:

- Build WRF with "2=preset moves"
- Must specify every move

Compile for nesting? (1=basic, 2=preset moves, 3=vortex following) [default 1]:

Automatic move

- Build WRF with "3=vortex following"
 - Only for tropical cyclone tracking
 - Expensive for single large nest

ndown.exe

- Use coarser WRF model output to drive finer resolution domains (i.e. 'downscaling')
- If you have run a long coarse domain simulation (years) and later decide you want to have a nest with higher resolution.
- If using several nests and domain size for the fine-resolution domain is much different than resolution for coarse domain (see this FAQ for additional information: <u>https://forum.mmm.ucar.edu/threads/how-many-processors-should-i-use-to-run-wrf.5082/</u>)

Nesting Set-up and Run

Compiling WRF for Nesting

*Note: Unless compiling for a moving nest, or 2D idealized case, there's no reason to not always choose "basic." It takes no longer to build.

Nesting Set-up for namelist.wps

&share wrf_core = max_dom = start_date = end_date = interval_seconds io_form_geogrid	'ARW', 1, '2012-01-27_00:00:00' '2012-01-28_00:00:00' = 21600 = 2,	, 2	d02 2012-01-27_00:00:00', 2012-01-27_00:00:00',	
&geogrid parent_id = parent_grid_ration i_parent_start = j_parent_start = e_we = e_sn = geog_data_res = dx = dy = map_proj = ref_lat = ref_lon = truelat1 = truelat2 = stand_lon = geog_data_path = /	1, = 1, 1, 1, 1, 175, 145, 'default', 30000, 30000, 'lambert', 37, -97.00, 45.0, 30.0, -97.0, '/data/static/geog'		1, 3, 70, 67, 181, 181, 'default',	
&ungrib out_format = prefix = / &metgrid fg_name = io_form_metgrid /	'WPS', 'FILE', 'FILE' = 2,			

namelist.wps & share for Nesting

namelist.wps & geogrid for Nesting (1)

namelist.wps & geogrid for Nesting (2)

&geogrid parent_id = 1,1, $parent_grid_ratio = 1,$ 3, $i_parent_start = 1, 70,$ j_parent_start = 1,67, = 175, 181, e_we = 145, 181, e_sn = 'default', 'default', geog_data_res = 30000,dx = 30000,dy = 'lambert', map_proj ref lat = 37.0,ref_lon = -97.0, truelat1 = 45.0, truelat2 = 30.0,= -97.0.stand_lon geog_data_path = '/data/static/geog/'

parent_id: The domain # of the nest's parent

 $parent_id = 1, 1, 2, 1$

namelist.wps & geogrid for Nesting (3)

Odd Ratios for Feedback Option

When using feedback, conditions are fed back to the parent domain from the child along the rows and columns, and at the mass points (center)

U: east-west velocitiesV: south-north velocitiesΘ: all other meteorological data

*Averaging is performed

3:1 grid ratio

namelist.wps & geogrid for Nesting (4)

e_we and e_sn:

&geogrid parent_id = 1, 1, $parent_grid_ratio = 1, 3,$ $i_parent_start = 1, 70,$ $j_parent_start = 1, 67,$ e_we = 175, 181, e_sn = 145, 181, geog_data_res = 'default', 'default', = 30000,dx dy = 30000.map_proj = 'lambert', ref_lat = 37.0, ref_lon = -97.0, truelat1 = 45.0, truelat2 = 30.0, stand_lon = -97.0, geog_data_path = '/data/static/geog/'

Each domain's full west-east and south-north dimensions

Notes:

- Domains should be > 100x100
- Keep nest away from coarse domain

namelist.wps & geogrid for Nesting (5)

&geogrid

parent_id	= 1,	1,
parent_grid_ratio	= 1,	3,
i_parent_start	= 1,	70,
j_parent_start	= 1,	67,
<mark>e_we</mark>	= 175,	181,
e_sn	= 145,	181,
geog_data_res	= 'defaul	t', 'default',
dx dy map_proj = 'la ref_lat = 32 ref_lon = -9 truelat1 = 49 truelat2 = 30 stand_lon = -9 geog_data_path =	= 30000, = 30000, ambert', 7.0, 97.0, 5.0, 0.0, 97.0, = '/data/sta	atic/geog/'

Notes:

- Domains should be > 100x100
- Keep nest away from coarse domain

namelist.wps Final Notes

&ungrib out_format = prefix = /	'WPS', 'FILE',			
&metgrid				
fg_name =	'FILE'			
io_form_metgrid = 2,				
/				

Notes:

- No changes need to be made to the &ungrib and &metgrid namelists records for nesting purposes
- Do not add values for additional columns if default namelist does not have values in more than d01 column.

Nesting Set-up for namelist.input

namelist.input &time_control for Nesting

start/end date/times:

These values *typically* will be the same for all domains

history_interval:

How often history is written out.
 *May choose to have more frequent output time for nests

frames_per_outfile:

The number of history intervals in a single file.

Time & Frequency Clarification

frames_per_outfile:

The number of history intervals in a single file. *In the example above, if it's set to 1, you should get a wrfout* file for each simulation hour.

interval_seconds:

The number of seconds between each met_em* file 10800 = 3-hourly input data

time_step:

How often the model integrates forward (in seconds). *180 = every 3 mins of simulation time*

history_interval:

Frequency (in simulation mins) that data is written/recorded.

= 60: history is recorded every 1 hour.

Since time_step=180, each history recording includes 20 time steps of integration.

namelist.input & domains for Nesting (1)

namelist.input & domains for Nesting (1)

Nested 3:1 Parent Time Step Ratio

- time_step = 180
- parent_time_step_ratio = 1, 3, 3,
 - D01: a single 3-min dt
 - D02: a single 1-min dt
 - D03: 20-second intervals, up to 1 min

Namelist.input & physics for Nesting

- You should use the same physics options for all domains for all schemes
 - Exceptions:
 - cumulus_scheme (cu_physics): Can turn off for a nest that has a grid distance of only a few kilometers
 - Can turn off PBL scheme for resolutions close to 100 m

Where should you start?

Namelist templates and descriptions provided in test/em_real

- README.namelist
- examples.namelist

Not all namelist options are domain-dependent. If in doubt:

- Check **Registry files** (found in WRF/Registry/)
 - * grep for parameter names look for "max_dom" (max_dom indicates a value is expected for each domain)

Rule of thumb: If default namelist only has 1 column, don't add values for other columns!

Running WPS & WRF for Nested Domain

WPS Output

- geogrid.exe : geo_em.d01.nc, geo_em.d02.nc, etc.
- ungrib.exe : same as single domain not domain dependent
- metgrid.exe:met_em.d01*, met_em.d02* , etc.

real.exe Output

wrfbdy_d01: Lateral boundary data for all times (domain 01 only)
wrfinput_d01, wrfinput_d02, etc.

- Single time-level data at the model's start time (for each domain)

wrf.exe Output

wrfout_d01*, wrfout_d02* , etc.

One for each domain, for each history time (depending on 'frames_per_outfile')
 wrfrst_d01*, wrfrst_d02*, etc.

- If "restart_interval" is less than or equal to the integration time

Use same executables for running with a single domain

Summary

• Decide the best strategy to run your simulation

- Based on resolution needed to resolve phenomenon, vs. resolution of input data
- Based on computational allowance
- If nesting is required, design your nest configuration
 - Design the coarse domain first
 - Determine the beginning and ending indices of the nest on the coarse domain
- Choose the appropriate nesting strategy:
 - one-way, two-way, or one-way via *ndown*

