WRF Initialization Program for Real Data: real

Wei Wang Virtual Tutorial, January 2025 Mesoscale and Microscale Meteorology Laboratory, NCAR

WRF Modeling System Flow Chart

In this talk...

- Basic functions of the program
- Defining vertical coordinates
- Lateral boundary condition file
- Input / output from the program
- Data flow in the program
- Code
- Common user options

Purposes of Program real

Getting data ready for WRF model integration

- Defines model vertical coordinate levels
- Defines model base state
- Interpolates data in the vertical to model levels
- Interpolates soil data below ground to land-surface model levels
- Adjusts soil data (*based on landmask*)
- Does vertical dynamic (*hydrostatic*) balance
- Computes model variables (reference and perturbation variables, mixing ratio, geopotential, moist potential temperature, etc.)
- Passes input for physics (*based on namelist choices*)
- Creates initial and boundary condition files for real-data cases from WPS/metgrid output

Creates initial condition files for all nests

Vertical Coordinate

The vertical hybrid coordinate of WRF model is a *hybrid* between terrain-following near ground and constant pressure at upper levels

 η_c or etac is a namelist variable a user can adjust, etac = 0.2

Two ways to define vertical hybrid coordinate.

Coordinate Definition:
$$\eta = rac{p_d - p_t}{p_s - p_t}$$

First way, explicitly defining the coordinate values:

e_vert	Number of vertical (interface) levels
<pre>p_top_requested</pre>	Model top pressure
eta_levels	1.0, 0.992, 0.980, 0.1
	(if you have access to the coordinate values)

Second way: more *analytical*

e_vert	Number of vertical (interface) levels
<pre>p_top_requested</pre>	Model top pressure
dzbot	Lowest model layer thickness (e.g. 30 m)
max_dz	Maximum layer thickness
dzstretch_s	Stretching factor near surface (PBL)
dzstretch_u	Stretching factor in free atmosphere

The goal is the have vertical grid spacing varying as smoothly as possible

When running *real* program, it will output the layer thickness values in rsl.out.0000 file:

Full	level	index =	22	Height =	2899.0	m	Thickness	=	334.6 m	
Full	level	index =	23	Height =	3264.2	m	Thickness	=	365.2 m	
Full	level	index =	24	Height =	3660.6	m	Thickness	=	396.4 m	
Full	level	index =	25	Height =	4088.5	m	Thickness	=	427.9 m	
Full	level	index =	26	Height =	4547.7	m	Thickness	=	459.2 m	
Full	level	index =	27	Height =	5037.7	m	Thickness	=	490.0 m	
Full	level	index =	28	Height =	5560.1	m	Thickness	=	522.4 m	
Full	level	index =	29	Height =	6116.3	m	Thickness	=	556.2 m	
Full	level	index =	30	Height =	6707.8	m	Thickness	=	591.4 m	
Full	level	index =	31	Height =	7335.7	m	Thickness	=	627.9 m	
Full	level	index =	32	Height =	8001.1	m	Thickness	=	665.5 m	
Full	level	index =	33	Height =	8705.1	m	Thickness	=	704.	
Full	level	index =	34	Height =	9448.2	m	Thickness	=	743.	45 levels 52 levels
Full	level	index =	35	Height = 1	L0230.7	m	Thickness	=	782.	
Full	level	index =	36	Height = 1	L1052.3	m	Thickness	=	821. ¹⁰⁰⁰	
Full	level	index =	37	Height = 1	L1912.4	m	Thickness	=	860.	
Full	level	index =	38	Height = 1	L2809.4	m	Thickness	=	897.	
Full	level	index =	39	Height = 1	L3756.0	m	Thickness	=	946.	
Full	level	index =	40	Height = 1	L4775.8	m	Thickness	= 1	L 019. 🖉	
Full	level	index =	41	Height = 1	L5795.5	m	Thickness	= 1	L 019. 🛱 👓	
Full	level	index =	42	Height = 1	L6815.3	m	Thickness	= 1	L019. 🗄	
Full	level	index =	43	Height = 1	L7835.0	m	Thickness	= 1	L019.	
Full	level	index =	44	Height = 1	L8854.8	m	Thickness	= 1	L019.	
Full	level	index =	45	Height = 1	L9874.5	m	Thickness	= 1	L019.	
									200	
WR	F								0	,

modal lavals

Program real.exe: Method 2 (See User's Guide)

Minimum number of vertical levels (e_vert) for various ptop levels (mb) when auto_levels_opt=2, dzbot=30m, max_dz=1000m, and dzstretch_s = dzstretch_u, and are set to values listed below

dzstretch_s	dzstretch_u	ptop value (in mb)							
		50	30	20	10	1			
1.1	1.1	50	53	55	59	72			
1.2	1.2	35	38	40	44	57			

Minimum number of vertical levels (e_vert) when auto_levels_opt=2, dzbot=30m, max_dz=1000m, and dzstretch_s and dzstretch_u are set as listed below

dzstretch_s	dzstretch_u	ptop value (in mb)							
		50	30	20	10	1			
1.2	1.02	56	61	65	70	84			
1.2	1.04	49	52	54	58	71			
1.2	1.06	44	47	50	53	66			

Base State Parameters

User-defined parameters (default available)

related to defining reference state and perturbation fields

base_temp^a
iso_temp^b
base pres strat^c

Base state surface temperature (290 K)

Base state stratosphere temperature (200 K)

Pressure at which the stratosphere temperature lapse rate changes (5500 hPa)

The <u>purpose</u> is to minimize perturbation fields to improve solution accuracy when discretized.

Vertical Interpolation in Atmosphere

real: Interpolates data from external sources to WRF model vertical coordinate

Vertical Interpolation in Atmosphere

- Vertical interpolation away from the ground (e.g. linear in log(p))
- Vertical interpolation near ground (e.g. do we want to use surface analysis)

Vertical Interpolation in Soil

- Model soil levels may not be the same as those in driving data
- Number of soil levels depends on LSM choices.

Lateral Boundary Condition Times

Mesoscale & Microscale Meteorology Laboratory / NCAR

Real-Data Lateral Boundary Condition: Location of Specified and Relaxation Zones

Soil Data Adjustment

Landuse Category Data

Soil Category Data

Need to adjusting Soil data based on landuse data

Input to *real*

• Meteorological data from external sources, either on constant pressure levels or native model levels:

- met_em.d01.*, met_em.d02.*, etc.

- Mandatory fields required by the model:
 - 3D U, V, T, relative humidity (or specific humidity or water vapor mixing ratio), pressure, geopotential height
 - Surface pressure and/or MSLP, soil temperature and moisture, surface U, V, T, RH (or specific humidity or water vapor mixing ratio)
 - Static fields processed by geogrid program: terrain, landuse, soil categories, etc.

Output from *real*

- Model initial and boundary files contains all meteorological data as well as static fields:
 - wrfinput_d01, wrfbdy_d01
 - wrfinput_d0* for nests
- Lower boundary files (*for long simulations*)
 - wrflowinp_d0*
- If nudging option is turned on:

- wrffdda_d0*

Output from *real*

- wrfinput_<domain> files:
 - Atmospheric state at the model start time
 - 3D U, V, moist theta, water mixing ratio, base pressure, perturbation pressure, base geopotential, perturbation geopotential, microphysics fields (typically zero)
 - Dry column pressure, many other 2D fields
- wrfbdy_d01 file:
 - Atmospheric variables at the beginning of the time window
 - Rate of change of the atmospheric variables in the time window
- wrflowinput_<domain> files:

SST, sea ice, vegetation fraction, etc.

Data Flow in Program real

Mesoscale & Microscale Meteorology Laboratory / NCAR

Common User Options

- Edit namelist.input, including all physics options some require special input data
- Choose what land-surface model to use and number of land-model levels
- Choose and / or define number of model vertical levels (e_vert, eta_levels)

- Require careful consideration

- Choose model top (ptop_requested)
- Choose lateral boundary zone how many
 relaxation rows and columns

