

WRF Initialization Program for Real Data: *real*

Wei Wang

WRF Virtual Tutorial, July 2025

Mesoscale and Microscale Meteorology Laboratory, NCAR

WRF Modeling System Flow Chart

In this talk...

- Basic functions of the program
- Defining vertical coordinates
- Lateral boundary condition file
- Input / output from the program
- Data flow in the program
- Code
- Common user options

Purposes of Program *real*

Getting data ready for WRF model integration

- **Defines model vertical coordinate levels**
- Defines model base state
- **Interpolates data in the vertical to model levels**
- Interpolates soil data below ground to land-surface model levels
- Adjusts soil data (*based on landmask*)
- Does vertical dynamic (*hydrostatic*) balance
- Computes model variables (*reference and perturbation variables, mixing ratio, geopotential, moist potential temperature, etc.*)
- Passes input for physics (*based on namelist choices*)
- **Creates initial and boundary condition files** for real-data cases from *WPS/metgrid* output
- **Creates initial condition files for all nests**

Vertical Coordinate

The vertical hybrid coordinate of WRF model is a *hybrid* between terrain-following near ground and constant pressure at upper levels

η_c or *etac* is a namelist variable a user can adjust, *etac* = 0.2

Defining Vertical Levels

Two ways to define vertical hybrid coordinate.

$$\text{Coordinate Definition: } \eta = \frac{p_d - p_t}{p_s - p_t}$$

First way, explicitly defining the coordinate values:

`e_vert`

Number of vertical (interface) levels

`p_top_requested`

Model top pressure

`eta_levels`

1.0, 0.992, 0.980,... 0.1

(if you have access to the coordinate values)

Defining Vertical Levels

Second way: more *analytical*

`e_vert`

Number of vertical (interface) levels

`p_top_requested`

Model top pressure

`dzbot`

Lowest model layer thickness (e.g. 30 m)

`max_dz`

Maximum layer thickness

`dzstretch_s`

Stretching factor near surface (PBL)

`dzstretch_u`

Stretching factor in free atmosphere

→ *The goal is to have vertical grid spacing varying as smoothly as possible*

Defining Vertical Levels

When running *real* program, it will output the layer thickness values in *rsl.out.0000* file:

```
Full level index = 22      Height = 2899.0 m      Thickness = 334.6 m
Full level index = 23      Height = 3264.2 m      Thickness = 365.2 m
Full level index = 24      Height = 3660.6 m      Thickness = 396.4 m
Full level index = 25      Height = 4088.5 m      Thickness = 427.9 m
Full level index = 26      Height = 4547.7 m      Thickness = 459.2 m
Full level index = 27      Height = 5037.7 m      Thickness = 490.0 m
Full level index = 28      Height = 5560.1 m      Thickness = 522.4 m
Full level index = 29      Height = 6116.3 m      Thickness = 556.2 m
Full level index = 30      Height = 6707.8 m      Thickness = 591.4 m
Full level index = 31      Height = 7335.7 m      Thickness = 627.9 m
Full level index = 32      Height = 8001.1 m      Thickness = 665.5 m
Full level index = 33      Height = 8705.1 m      Thickness = 704.7 m
Full level index = 34      Height = 9448.2 m      Thickness = 743.0 m
Full level index = 35      Height = 10230.7 m     Thickness = 782.0 m
Full level index = 36      Height = 11052.3 m     Thickness = 821.0 m
Full level index = 37      Height = 11912.4 m     Thickness = 860.0 m
Full level index = 38      Height = 12809.4 m     Thickness = 897.0 m
Full level index = 39      Height = 13756.0 m     Thickness = 946.0 m
Full level index = 40      Height = 14775.8 m     Thickness = 1019.0 m
Full level index = 41      Height = 15795.5 m     Thickness = 1019.0 m
Full level index = 42      Height = 16815.3 m     Thickness = 1019.0 m
Full level index = 43      Height = 17835.0 m     Thickness = 1019.0 m
Full level index = 44      Height = 18854.8 m     Thickness = 1019.0 m
Full level index = 45      Height = 19874.5 m     Thickness = 1019.0 m
```


Defining Vertical Levels

Program **real.exe**: Method 2 (See User's Guide)

Minimum number of vertical levels (*e_vert*) for various ptop levels (mb) when
auto_levels_opt=2, *dzbot=30m*, *max_dz=1000m*,
and *dzstretch_s = dzstretch_u*, and are set to values listed below

dzstretch_s	dzstretch_u	ptop value (in mb)					
		50	30	20	10	1	
1.1	1.1	50	53	55	59	72	
1.2	1.2	35	38	40	44	57	

Minimum number of vertical levels (*e_vert*) when *auto_levels_opt=2*, *dzbot=30m*,
max_dz=1000m, and *dzstretch_s* and *dzstretch_u* are set as listed below

dzstretch_s	dzstretch_u	ptop value (in mb)					
		50	30	20	10	1	
1.2	1.02	56	61	65	70	84	
1.2	1.04	49	52	54	58	71	
1.2	1.06	44	47	50	53	66	

Base State Parameters

User-defined parameters (default available)

- related to defining reference state and perturbation fields

`base_tempa`

Base state surface temperature (290 K)

`iso_tempb`

Base state stratosphere temperature (200 K)

`base_pres_stratc`

Pressure at which the stratosphere
temperature lapse rate changes (5500 hPa)

The purpose is to minimize perturbation fields to improve solution accuracy when discretized.

Vertical Interpolation in Atmosphere

real: Interpolates data from external sources to WRF model vertical coordinate

Vertical Interpolation in Atmosphere

- Vertical interpolation away from the ground (e.g. linear in $\log(p)$)
- Vertical interpolation near ground (e.g. do we want to use surface analysis)

Vertical Interpolation in Soil

- Model soil levels may not be the same as those in driving data
- Number of soil levels depends on LSM choices.

Soil levels from driving data

Land model soil levels

Lateral Boundary Condition Times

Real-Data Lateral Boundary Condition: Location of Specified and Relaxation Zones

Soil Data Adjustment

Landuse Category Data

Soil Category Data

Need to adjusting Soil data based on landuse data

Input to *real*

- Meteorological data from external sources, either on constant pressure levels or native model levels:
 - `met_em.d01.*`, `met_em.d02.*`, etc.
- Mandatory fields required by the model:
 - 3D U, V, T, relative humidity (or specific humidity or water vapor mixing ratio), pressure, geopotential height
 - Surface pressure and/or MSLP, soil temperature and moisture, surface U, V, T, RH (or specific humidity or water vapor mixing ratio)
 - Static fields processed by geogrid program: terrain, landuse, soil categories, etc.

Output from *real*

- Model initial and boundary files – contains all meteorological data as well as static fields:
 - `wrfinput_d01`, `wrfbdy_d01`
 - `wrfinput_d0*` for nests
- Lower boundary files (*for long simulations*)
 - `wrflowinp_d0*`
- If nudging option is turned on:
 - `wrfffdpa_d0*`

Output from *real*

- **wrfinput_<domain>** files:
 - Atmospheric state at the model start time
 - 3D U, V, moist theta, water mixing ratio, base pressure, perturbation pressure, base geopotential, perturbation geopotential, microphysics fields (typically zero)
 - Dry column pressure, many other 2D fields
- **wrfbdy_d01** file:
 - Atmospheric variables at the beginning of the time window
 - Rate of change of the atmospheric variables in the time window
- **wrflowinput_<domain>** files:
 - SST, sea ice, vegetation fraction, etc.

Data Flow in Program *real*

Domain 1

Nests

Source Code

Common User Options

- Edit namelist.input, including all physics options – *some require special input data*
- Choose what land-surface model to use and number of land-model levels
- Choose and / or define number of model vertical levels (**e_vert**, **eta_levels**)
 - *Require careful consideration*
- Choose model top (**ptop_requested**)
- Choose lateral boundary zone – how many relaxation rows and columns

