#### An Overview of the WRF Pre-Processing System (WPS)

Michael Duda

Basic WRF Tutorial 3 – 7 February 2025





# WRF Modeling System Flowchart















Defining rectangular domains with minimal distortion can be challenging on the surface of a sphere\*

Projecting the region of interest onto a plane simplifies this task.

\* The WRF model assumes a spherical Earth with radius 6370 km



#### Cylindrical equidistant ("latitude-longitude") projection





Basic WRF Tutorial

#### Mercator projection



3 – 7 February 2025

WROP

7

#### Lambert conformal conic projection





Polar stereographic projection





Basic WRF Tutorial







For a rectangular domain over the Caribbean, a polar stereographic projection may not be ideal: scale distortion across the domain is non-trivial





However, the Mercator projection does work well for lower latitudes



Basic WRF Tutorial

#### 49x31 cells, 104 km grid distance





Basic WRF Tutorial

#### 196x124 cells, 26 km grid distance





Basic WRF Tutorial





#### Land-use category, 104 km grid





Basic WRF Tutorial

#### Land-use category, 26 km grid





#### Terrain elevation, 104 km grid





#### Terrain elevation, 26 km grid





Basic WRF Tutorial









# Uncompressing and decoding GRIB records

Historically, many meteorological datasets were (and still are) distributed in a WMO-standard format called GRIB

- <u>General Regularly-distributed Information in Binary</u>
- Fields are typically compressed with a lossy compression algorithm
- Fields are identified by code numbers









#### Uncompressing and decoding GRIB records

Writing to an "intermediate" file format provides a target to which other non-GRIB datasets may be converted

If the "intermediate" file format is simple enough, writing tools to, e.g., bias-correct fields becomes easier













The rectangular grid defined by the *geogrid* program provides a target to which we can interpolate meteorological fields

 Model ICs and LBCs will be derived from these interpolated, <u>time-varying</u> fields

Temperature Humidity (R.H. or S.H.) Winds Z P<sub>SFC</sub>, P<sub>MSL</sub> SST Soil temperature Soil moisture (Plus a few others...)













Basic WRF Tutorial





Basic WRF Tutorial





Basic WRF Tutorial





Basic WRF Tutorial



![](_page_32_Picture_2.jpeg)

Basic WRF Tutorial

![](_page_33_Figure_1.jpeg)

![](_page_33_Picture_2.jpeg)

Basic WRF Tutorial

![](_page_34_Figure_1.jpeg)

![](_page_34_Picture_2.jpeg)

Basic WRF Tutorial

![](_page_35_Figure_1.jpeg)

![](_page_35_Picture_2.jpeg)

Basic WRF Tutorial

![](_page_36_Figure_1.jpeg)

![](_page_36_Picture_2.jpeg)

If we have atmospheric state variables interpolated to every grid point in our model domain for time periods covering our simulation duration, *why do we need to run the WRF model?* 

![](_page_37_Picture_2.jpeg)

![](_page_38_Figure_1.jpeg)

![](_page_38_Picture_2.jpeg)

Basic WRF Tutorial

![](_page_39_Figure_1.jpeg)

![](_page_39_Picture_2.jpeg)

Basic WRF Tutorial

![](_page_40_Figure_1.jpeg)

![](_page_40_Picture_2.jpeg)

Basic WRF Tutorial

![](_page_41_Figure_1.jpeg)

![](_page_41_Picture_2.jpeg)

![](_page_42_Figure_1.jpeg)

![](_page_42_Picture_2.jpeg)

Basic WRF Tutorial

![](_page_43_Figure_1.jpeg)

![](_page_43_Picture_2.jpeg)

Basic WRF Tutorial

![](_page_44_Figure_1.jpeg)

![](_page_44_Picture_2.jpeg)

Basic WRF Tutorial

![](_page_45_Figure_1.jpeg)

![](_page_45_Picture_2.jpeg)

![](_page_46_Figure_1.jpeg)

![](_page_46_Picture_2.jpeg)

![](_page_47_Figure_1.jpeg)

![](_page_47_Picture_2.jpeg)

# And finally...

# Vertical interpolation to WRF eta levels is performed in the *real* program

![](_page_48_Figure_2.jpeg)

![](_page_48_Picture_3.jpeg)

# The End.

![](_page_49_Picture_1.jpeg)

Basic WRF Tutorial