

An Overview of the WRF Pre-Processing System (WPS)

Michael Duda

Basic WRF Tutorial
14 – 18 July 2025

WRF Modeling System Flowchart

WPS Flowchart

WPS Flowchart

Projecting the Earth's surface

Defining rectangular domains with minimal distortion can be challenging on the surface of a sphere*

Projecting the region of interest onto a plane simplifies this task.

** The WRF model assumes a spherical Earth with radius 6370 km*

Projecting the Earth's surface

Cylindrical equidistant ("latitude-longitude") projection

Projecting the Earth's surface

Mercator projection

Projecting the Earth's surface

Lambert conformal conic projection

Projecting the Earth's surface

Polar stereographic projection

WPS Flowchart

Laying out a simulation grid

For a rectangular domain over the Caribbean, a polar stereographic projection may not be ideal: scale distortion across the domain is non-trivial

Laying out a simulation grid

However, the
Mercator projection
does work well for
lower latitudes

Laying out a simulation grid

49x31 cells, 104 km grid distance

Laying out a simulation grid

196x124 cells, 26 km grid distance

WPS Flowchart

Interpolating terrestrial fields

Land-use category, 104 km grid

Interpolating terrestrial fields

Land-use category, 26 km grid

Interpolating terrestrial fields

Terrain elevation, 104 km grid

Interpolating terrestrial fields

Terrain elevation, 26 km grid

WPS Flowchart

WPS Flowchart

Uncompressing and decoding GRIB records

Historically, many meteorological datasets were (and still are) distributed in a WMO-standard format called GRIB

- General Regularly-distributed Information in Binary
- Fields are typically compressed with a lossy compression algorithm
- Fields are identified by code numbers

WPS Flowchart

Uncompressing and decoding GRIB records

Writing to an "intermediate" file format provides a target to which other non-GRIB datasets may be converted

If the "intermediate" file format is simple enough, writing tools to, e.g., bias-correct fields becomes easier

WPS Flowchart

WPS Flowchart

Horizontally interpolating meteorological data

The rectangular grid defined by the *geogrid* program provides a target to which we can interpolate meteorological fields

- Model ICs and LBCs will be derived from these interpolated, time-varying fields

Temperature
Humidity (R.H. or S.H.)
Winds
 Z
 P_{SFC} , P_{MSL}
SST
Soil temperature
Soil moisture
(Plus a few others...)

Horizontally interpolating meteorological data

WPS Flowchart

Horizontally interpolating meteorological data

If we have atmospheric state variables interpolated to every grid point in our model domain for time periods covering our simulation duration, *why do we need to run the WRF model?*

Horizontally interpolating meteorological data

WPS Flowchart

And finally...

Vertical interpolation to WRF eta levels is performed in the *real* program

The End.