
WRF Computation
Understanding how to get the

most computational
performance

Anthony Islas,
WRF Tutorial

1

Fundamentals
- Latency
- Memory Hierarchy

Parallel Processing
- Shared Memory vs Distributed (OpenMP vs MPI)

WRF Parallelism
- Domain Decomposition
- Halo Exchanges
- Scaling

Agenda

Getting the best performance depends on what metrics you prioritize

Task #1 Task #2

Task #1

Task #2

2

With an infinitely fast computer, no timing optimization or parallel
execution would ever be necessary (memory available permitting)

We are limited to the speed at which physical interactions of
electricity propagate within silicon/copper/etc.

- This delay continuously adds up, compounding with distance
and complexity (# of interactions)

- Ultimately when increasing computational speed, we are
fighting latency at many levels

For a single task, to go as fast as possible we should:
- Try to keep actions as close to minimum delay as possible
- When required to slow down to longer delays, limit the time in this state

Fundamentals

Latency

xkcd #2565 Latency

3

Processors can only go so fast, and certain
actions always take longer

But with good division of labor and resources
things can be accelerated

Assume our computation speed is as fast as a human can reasonably move. Our goal is making
a sandwich. Seems generally easy, right?

- The fastest would be to have all the ingredients ready on the table
- The slowest would be going to the store to get the ingredients one at a time

Parallel Processing

Building an Analogy for Latency

4

As we increase tasking the workload on a single processor can be immense. If we have access
to more resources we can increase number of workers

- Each worker would now have less overall work to do vs the single processor

Using the analogy, this could be like adding more kitchen workspaces, pantry space, etc.

Computer Memory Hierarchy - building an intuition without numbers
- How fast is fast?
- How slow is slow?
- How much time is long/short term?

Using our analogy, the speed and longevity of items
could be represented as:
 - CPU registers : Ingredients in your hands
 - Cache : Ingredients on the counter
 - RAM : Ingredients in the pantry/refrigerator
 - Flash/SSD : Ingredients at the store on display
 - Hard drive : Ingredients at local warehouse

to stock
 - Backup archive : Wait for ingredients to grow

on farm
It is in our best interest to be efficient about when and how we access our “ingredients” for
computation to minimize large-delay bottlenecks in our computation of “making a sandwich”

Fundamentals

Memory Hierarchy

5

Parallelization of workloads generally have an added layer of software coordination such as :

- OpenMP
Shared memory (threads) operate within the same memory space of the task at hand
Re: our analogy this could be equivalent to working on the same kitchen table

- CPU memory space permitting, this can generally be faster
- Not many slots available though and doesn’t scale at large (e.g. one giant table)

- MPI
Distributed memory (processes) operate within separate memory spaces and must use
external coordination between tasks
Re: our analogy this could equivalent to many separate kitchen tables, requiring
coordination to happen away from the table

- Operation outside the same memory space could take longer, isolation of memory
usage could streamline resource access

- Scales well at larger # of tasks every task isolated and is primarily limited by
coordination layer (aside from actual computation) at this scale

Parallel Processing

Shared vs Distributed Memory

6

To effectively parallelize work in WRF, we need to break down the work into smaller pieces,
ideally all similar to more easily distribute and divide the problem

&domains
...
 e_we = 1500
 e_sn = 1500
 dx = 3000
 dy = 3000
...

WRF Parallelism

2D Domain Decomposition

For a single non-nested
domain:

- dx dy composes the area
of a grid cell

- e_we e_sn determines
the total number of cells

The smallest unit of
computation is a single grid
cell, each of which can be
independently parallelized
(until boundary must be
updated)

Number of cells is often determined
by region of interest, but we will see
that this can sometimes be adjusted
for better performance on nested
domains

Choosing dx dy is often determined
by resolution of feature size

7

OpenMP vs MPI - How to divide up the domain?

WRF Parallelism

2D Domain Decomposition

Legend / Terminology

Process (MPI) -

Thread (OpenMP) -

With (2) OpenMP Threads
We split the domain
in half to make two tiles -
two areas within the
same shared memory
allowing seamless communication
of boundary exchanges

This means the tiles don’t
need to coordinate boundary
information transfer
between timesteps

However we still need to
synchronize!

tile

8

WRF Parallelism

2D Domain Decomposition

Legend / Terminology

Process (MPI) -

Thread (OpenMP) -

We can continue adding
threads to further
decompose our
domain.

This will make each
thread’s work smaller
and thus overall
execution time faster

two along x

two along y

However, eventually…

Note that the default is to
use the two closest factors
with the larger one in the j/ns/y
direction. We can control this via :
tile_sz_x/y for OpenMP
nproc_x/y for MPI
But for most applications the default
will work okay 9

WRF Parallelism

2D Domain Decomposition

Legend / Terminology

Process (MPI) -

Thread (OpenMP) -

If our processor
only has room for
N threads performance
can drop due to
oversubscribed
resources

Recall our analogy : At a certain
point, tasking more people to do a
job without increasing appropriate
resources leads to congestion and
resource contention

10

Eventually we are at the
limit of what an
individual processor
can handle,
i.e. we need more
resources than what a
single processor can
offer

WRF Parallelism

2D Domain Decomposition

Legend / Terminology

Process (MPI) -

Thread (OpenMP) -

We can instead allocate
more resources per
division by instead using
MPI processes to create
patches - areas of
separate distributed memory

Take for instance this patch

Its boundary resides in other
patches outside its memory space

For better performance at larger
scales we might want to allow our
divisions of our domain to operate in
separate memory locations…

These reside in different memory
spaces - now our boundaries
cannot communicate
with each other
immediately…

These can be further separated into smaller
tiles but we will avoid that for now

patch

11

WRF Parallelism

Halo Exchanges

Halo exchanges are a
necessary incurred latency cost
to coordinating patches

This is a critical component of
how well WRF scales

We need these
cells to compute
tendencies in our
patch

Let’s look at an example
of computing some
regions

We might assume we can
individually transfer all
cells independently at the
same time…

But in reality if we only
have one process, it
would have to go
back-and-forth between
computations paying the
cost each time

Recall our analogy :
Even if we had more
processes, if we had each
request handled
separately, we’d pay the
latency cost for each.

It would be like sending
15 people to the store to
all get separate items in
the same aisle for the
same dish!

12

WRF Parallelism

Halo Exchanges

Halo exchanges are a
necessary incurred latency cost
to coordinating patches

This is a critical component of
how well WRF scales Instead we can gather the

cells all at once

This allows us to traverse
the other patch in its local
memory space, reducing
latency

Now for any calculation
along our patch border
we no longer need to go
out to a different memory
space

Not shown here

Once gathered, the
boundary of the bordering
patch is stored locally for
faster access

The same exact values in different locations

Recall our analogy :
This might be like
storing our ingredients
in our particular pantry
for quicker access

So now we know how to
effectively do halo exchanges

Why do we need to talk about
scaling? Can’t we just add
more processes to go
proportionally faster?

Let’s instead optimize our
“route” to gather values

13

WRF Parallelism

Limitations of Halo Exchanges

…

…

…

Thought experiment:
Using the shown number of
cells in the diagrams, let’s say
computation of
- one cell takes 5 us
- aggregation of a cell for a
halo exchange is 1 us
- the halo exchange itself
takes 5 us

*These are arbitrary generalized values

If we continue to subdivide our
domain into patches with more
MPI tasks, we can start to see
how the proportion of our
boundary coordination begins
to affect our performance gains

In our 1 process
situation, while slow, all
time is spent computing
with no overhead on
parallel coordination

Using an example patch
of 15x15 cells our
efficiency would be :
- 4 halo exchanges
 - each gathers 15 cells
- 15x15 cells computed
Yielding (225us)/(305us)
or 73.77% efficiency

Slower, but more
efficient..

5us

1us*5 ⇒ 5us

5us

With 4 halo exchanges the latency
cost would be : 4 * (1us * 5 + 5us)
or 40us

Our computational efficiency could be
described as

(time spend doing computation)
(total time to do task)

Meaning for our average patch we are
operating at 65.22% efficiency
with regards to halo exchange

Meanwhile the cost of the patch
computation would be : 5 * 5 * 5us
or 75us

most
common

patch

14

Smaller patches have decreased model runtime at the cost of lowered computational efficiency
in part due to halo exchange and disproportionate shrinkage of area to perimeter, whereby the
perimeter latency does not contribute to computational progress. Conversely, larger patches
decrease speed but increase efficiency.

Halo exchanges are NOT the only form of latency and sole driving factor in reduction of
efficiency, however they are a critical component and the concepts shown here further illustrate
how other latencies may affect performance.

How does this all relate to actual runtimes? We know that if we add 2x processes, our speed up
will likely not be 2x, but what will it actually be? How do we balance how many cores to allocate
to get the desired speed increase?

WRF Parallelism

Limitations of Halo Exchanges

15

WRF v4.5.2 1500x1500x50, 3km, CONUS Suite
● Domain

○ 1500 w/e x 1500 s/n
○ 50 vertical levels
○ 3km in dx and dy for cells

● Timesteps
○ 18s dt
○ 180s dt for rad steps
○ 12 minute simulation
○ 10hr spin-up then restart

● Options
○ No cumulus
○ Hybrid vertical activated
○ Moist theta

● No I/O done during timings

Run on Derecho 128-core nodes

WRF Parallelism

Scaling - Model Configuration

metgrid output of domain

16

Achieving perfect 1-to-1 performance increase with added parallelism would be the theoretical
maximum, however recall that latency and parallel coordination overhead thwart our numbers!

The closest to perfect efficiency we can be in terms of no additional latencies is a single process
doing everything slowly. We can use this as a baseline to create two types of plots to explore
how WRF actually scales with respect to real domain decomposition :

WRF Parallelism

Scaling

← This looks as
expected. A hyperbolic
decay of timing almost
characterized by 1/N

But this is difficult to
view performance
trends in a granular
manner

This is a scaling plot →
where we reinterpret

the data with respect to
some nominal value

that constitutes perfect
(100%) computational

efficiency

Decreasing time to
compute a model step is a
good trend, but how
good?

A plot of “how good”
We want to be at this line

Pe
rfe

ct
 S

ca
lin

g

We will be using this style of plot from now on

17

WRF Parallelism

Scaling - Explanation of Plot

Trendline of relative performance to
some defined metric

The metric we are comparing
against.

The calculation for this is:
(metric time) * (metric proc #)

recorded time

This formula reparametrizes the
values such that a time step in the
prescribed metric is operating at
100% efficiency, and for that
specific metric the output will be 1
(i.e. 100% performance).

If 2x metric processors are used, an
equivalent halving of the time to
calculate the total simulation would
be correctly represented as a 2, or
200% performance increase.

The spread of values from simulation
run

This is not shown in most future
plots since we are focusing on
average performance

A perfect scaling line of
x = y
Essentially, if we double
x, y (our performance)
will also double

Performance loss
compared to metric, i.e.
how much below 100%
efficiency we are
This is how well we scale
at this processor count

Average efficiency at this processor
count is easy to calculate if 100% is
x = y
For this point it would be :
4580 / 20736 => 22.09%

18

When 1 Processor is used as a metric, as
soon as we add parallelization scaling
drops off dramatically.

This metric heavily penalizes any latency
that is not directly progressing the
simulation computation.

Using a metric that captures realistic
latency would be a more reasonable
real-world comparison when looking at
massive parallelization anyways

WRF Parallelism

Scaling - MPI Performance vs 1 Processor

Look how far off we are
at maximum processors
for this domain!

19

Using 16 MPI ranks as a baseline metric
properly represents a nominal amount of
parallelization overhead, but does not
account for internode communications
when scaling beyond 1 node.

At maximum 22500 processors :
52.65% for non-rad timesteps
66.90% for radiation timesteps

WRF Parallelism

Scaling - MPI Performance vs 16 Processor

Choosing a useful metric as a baseline is critical to presenting scaling as it is inherently relative

We can see that our radiation timesteps at
larger processor counts continues to scale
better than our normal timesteps.
Radiation steps often take longer, so why
might they appear to scale better?

20

Recall the concepts learned from the halo
exchange thought experiment :

Better computational efficiency is
associated with a higher proportion of time
spent doing the computation vs total time
to perform the task.

WRF Parallelism

Scaling - MPI Performance vs 16 Processor

Computationally expensive tasks may generally have stronger scaling 21

Radiation time steps are computationally
expensive and thus more time is spent on
the cell computation than the parallel
coordination in general.

This trend continues stronger than the
analogous main timesteps that start to
become more dominated by parallel
overhead.

To better characterize massive
parallelization we might set our baseline to
256 processors for our use case. This
makes total use of two nodes and
captures the first latencies of internode
communications.

WRF Parallelism

Scaling - MPI Performance vs 256 Processor

But now we have our performance going
beyond the “theoretical” limit of scaling.
How?

This is referred to as superlinear scaling

22

WRF Parallelism

Scaling - MPI Performance vs 256 Processor

Recall that these are reinterpretations of
performance to some baseline, and in
these runs we are simply outperforming
that baseline.

One might still ask:
● How are we outperforming that baseline?
● Wasn’t 1 process the most efficient?
● All nodes are fully occupied, and all

processes still get the same resources, so
processes are not working with any more
or less resources, right?

Recall our analogy : Everyone
might have the same resources,
but with less work per person
they might be less overwhelmed
and work more efficiently now

A possible explanation could be due to domain
decomposition each process has more resources
relative to the size of computation now, getting
an effective performance boost in areas where
computation was resource constrained

23

What does scaling look like within a node?

WRF Parallelism

Scaling - MPI vs OMP vs 1 Processor (Single Node)

OpenMP Scaling

Larger
discrepancy

Less linear scaling within a node than MPI
● Possibly due to more coupled usage of

computing resources when within the
same shared memory space

Large discrepancy between radiation timesteps
scaling

● Possibly due to the same thing that affords
rad steps better scaling exacerbates MPI
vs OpenMP

○ Computationally intensive with
potentially many resources used

○ Threads within the same memory
space might be thrashing each other

Recall our analogy : Once “full”, adding more people to the same
table is less effective than giving everyone a separate table even if
the same total surface area is used to isolate workspaces

OpenMP slightly performed better until this point 24

WRF Parallelism

Scaling - Nested Domains

Processing of nested domains requires propagating forward 1 timestep in the parent beforehand
to generate lateral boundary conditions

● Nested domain layers are inherently a serialized process
● All available cores are used to quickly go through a timestep
● Parent domains and nested domains use the same number of processors for domain

decomposition
● Domain decomposition is limited to 10x10 cell sizes
● The cost of nested domain steps can easily dominate the total cost of a simulation

If the nested domain has a significantly higher number of cells than the parent domain, the
parent domain will limit the number of processors able to be used for domain decomposition
even though it is less computationally expensive!

25

Example: A 500x500 parent domain with a nested domain of size 250x250 in parent grid cells
with a grid ratio of 3 and a timestep ratio of 3 as well - totaling 750x750 grid cells.

The nested domain would have a cell amount 2.25x more than the parent! Our parent domain is
limited to a domain decomposition of 50x50, or 2500 processors, whereas our nested domain
would be limited to 75x75, or 5625 processors.

WRF Parallelism

Scaling - Nested Domains

26

If the parent domain computation takes only 13% of the total time,
we would be throttling our scaling to something that only makes a
minimal impact on our total runtime.

Try to make your nested and parent domain total cell sizes at least match to
maximize scaling of the two.

Keeping the nested domain the same size, if we increase the parent
domain to size 750x750, we now have the same limit on scaling for
both domains. This would make the parent domain take 25% of our
total runtime, but now with the ability to add >2x processors

WRF Computation

Summary
Maximizing computational performance depends on many factors, including what
performance metric you are trying to optimize - time vs efficiency.

Latency, especially overhead of memory access and parallel software coordination, play a fundamental role in how
well software can be accelerated.

Due to the dynamics involved in NWP, as we continue to partition out smaller workloads via domain decomposition
coordination of lateral boundary conditions - such as with halo exchanges - are a significant factor in limiting how
well WRF can scale.

Understanding scaling works best if one understands the baseline metric used to scale against and the implications of
that chosen scale.

Computationally expensive tasks may exhibit stronger overall scaling as the overhead of parallelization is not as
prevalent as workload decreases.

Using a scaling graph, we can better understand how to balance expected runtime and performance increase to our
available computing resources.

When seeking to maximize scaling of a nested domain, consider the limitations the parent domain has and
appropriately scale the parent to allow the nested domain to reach peak scaling. 27

Thank you

Click to add footer 28

Backup slides

29

WRF Computation

MPI Timings 1500x1500x50, 3km, CONUS Suite vs 256 proc
Processor

Count
i dim j dim Main(s) Rad(s) Main Perf Rad Perf Main Scaling Rad Scaling

1 1500 1500 248.24584 1123.70343 3.78431 1.88983 3.78431 1.88983
4 750 750 80.91518 311.41487 11.61019 6.81923 2.90255 1.70481

16 375 375 41.32153 101.12227 22.73489 21.00042 1.42093 1.31253
32 375 188 25.64082 55.92232 36.63847 37.97429 1.14495 1.1867
64 188 188 13.20109 31.75976 71.16385 66.86482 1.11194 1.04476

128 188 94 7.27732 16.53463 129.09157 128.43413 1.00853 1.00339
256 94 94 3.66969 8.29535 256 256 1 1
512 94 47 1.68862 4.19213 556.33762 506.57116 1.0866 0.9894
768 63 47 1.11251 2.74242 844.43655 774.35733 1.09953 1.00828

1024 47 47 0.8336 2.19742 1126.97118 966.41228 1.10056 0.94376
1536 47 32 0.52214 1.49019 1799.19726 1425.0602 1.17135 0.92777
2048 47 24 0.36948 1.08746 2542.61475 1952.81109 1.24151 0.95352
2560 38 24 0.29179 0.86425 3219.60759 2457.162 1.25766 0.95983
3584 27 24 0.22073 0.62501 4256.04498 3397.72236 1.18751 0.94803
4608 24 21 0.17076 0.48489 5501.47099 4379.57156 1.1939 0.95043
5888 24 17 0.12879 0.36253 7294.12193 5857.80481 1.23881 0.99487
7168 24 14 0.10844 0.2916 8663.24937 7282.61472 1.2086 1.01599
8960 19 14 0.09053 0.23812 10377.24385 8918.36125 1.15817 0.99535

11520 16 13 0.07559 0.19506 12427.41864 10886.96018 1.07877 0.94505
15616 13 12 0.0638 0.14779 14725.28336 14369.43197 0.94296 0.92017
20736 11 11 0.05421 0.11534 17330.805 18411.74314 0.83578 0.88791
22500 10 10 0.05237 0.10833 17939.37758 19602.55803 0.79731 0.87122

30

Using the concepts built up, we can better understand typical parallelization techniques :
- Independent tasks for reading/writing to “disk” (isolate slowest memory accesses)
- Load data in chunks, and localize common data to similar regions for quick access
- Defer synchronization/coordination events until necessary and group these events together
- Where possible make tasking instructions (software) generally the same and independent

for bulk repeating tasks as these can then be split up without impacting other tasking

Splitting tasking to max the amount of work each worker does
without stopping for other tasks can vastly increase our
real-world time cost.

Parallel Processing

Typical Usage / Techniques

NVIDIA : Optimizing Parallel
Reduction in CUDA

Each reduction step is a
synchronization + is mindful of

the location of memory

31

