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Fundamentals
- Latency
- Memory Hierarchy

Parallel Processing
- Shared Memory vs Distributed (OpenMP vs MPI)

WRF Parallelism
- Domain Decomposition
- Halo Exchanges
- Scaling

Agenda

Getting the best performance depends on what metrics you prioritize

Task #1 Task #2

Task #1

Task #2
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With an infinitely fast computer, no timing optimization or parallel
execution would ever be necessary (memory available permitting)

We are limited to the speed at which physical interactions of 
electricity propagate within silicon/copper/etc.

- This delay continuously adds up, compounding with distance
and complexity (# of interactions)

- Ultimately when increasing computational speed, we are
fighting latency at many levels

For a single task, to go as fast as possible we should:
- Try to keep actions as close to minimum delay as possible
- When required to slow down to longer delays, limit the time in this state

Fundamentals

Latency

xkcd #2565 Latency
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Processors can only go so fast, and certain 
actions always take longer 

But with good division of labor and resources 
things can be accelerated

Assume our computation speed is as fast as a human can reasonably move. Our goal is making 
a sandwich. Seems generally easy, right?

- The fastest would be to have all the ingredients ready on the table
- The slowest would be going to the store to get the ingredients one at a time

Parallel Processing

Building an Analogy for Latency
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As we increase tasking the workload on a single processor can be immense. If we have access 
to more resources we can increase number of workers

- Each worker would now have less overall work to do vs the single processor

Using the analogy, this could be like adding more kitchen workspaces, pantry space, etc.



Computer Memory Hierarchy - building an intuition without numbers
- How fast is fast?
- How slow is slow?
- How much time is long/short term?

Using our analogy, the speed and longevity of items 
could be represented as:
 - CPU registers : Ingredients in your hands
 - Cache : Ingredients on the counter
 - RAM : Ingredients in the pantry/refrigerator
 - Flash/SSD : Ingredients at the store on display
 - Hard drive : Ingredients at local warehouse 

to stock
 - Backup archive : Wait for ingredients to grow 

on farm
It is in our best interest to be efficient about when and how we access our “ingredients” for 
computation to minimize large-delay bottlenecks in our computation of “making a sandwich”

Fundamentals

Memory Hierarchy
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Parallelization of workloads generally have an added layer of software coordination such as :

- OpenMP
Shared memory (threads) operate within the same memory space of the task at hand
Re: our analogy this could be equivalent to working on the same kitchen table

- CPU memory space permitting, this can generally be faster
- Not many slots available though and doesn’t scale at large (e.g. one giant table)

- MPI
Distributed memory (processes) operate within separate memory spaces and must use 
external coordination between tasks
Re: our analogy this could equivalent to many separate kitchen tables, requiring 
coordination to happen away from the table

- Operation outside the same memory space could take longer, isolation of memory 
usage could streamline resource access

- Scales well at larger # of tasks every task isolated and is primarily limited by 
coordination layer (aside from actual computation) at this scale

Parallel Processing

Shared vs Distributed Memory
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To effectively parallelize work in WRF, we need to break down the work into smaller pieces, 
ideally all similar to more easily distribute and divide the problem

&domains
...
 e_we = 1500
 e_sn = 1500
 dx    = 3000
 dy    = 3000
...

WRF Parallelism

2D Domain Decomposition

For a single non-nested 
domain:

- dx dy composes the area 
of a grid cell

- e_we e_sn determines 
the total number of cells

The smallest unit of 
computation is a single grid 
cell, each of which can be 
independently parallelized
(until boundary must be 
updated) 

Number of cells is often determined 
by region of interest, but we will see 
that this can sometimes be adjusted 
for better performance on nested 
domains

Choosing dx dy is often determined 
by resolution of feature size
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OpenMP vs MPI - How to divide up the domain?

WRF Parallelism

2D Domain Decomposition

Legend / Terminology

Process (MPI) - 

Thread (OpenMP) - 

With (2) OpenMP Threads
We split the domain
in half to make two tiles - 
two areas within the 
same shared memory 
allowing seamless communication
of boundary exchanges

This means the tiles don’t 
need to coordinate boundary
information transfer
between timesteps

However we still need to 
synchronize!

tile
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WRF Parallelism

2D Domain Decomposition

Legend / Terminology

Process (MPI) - 

Thread (OpenMP) -

We can continue adding
threads to further
decompose our 
domain.

This will make each 
thread’s work smaller
and thus overall
execution time faster

two along x

two along y

However, eventually…

Note that the default is to
use the two closest factors
with the larger one in the j/ns/y
direction. We can control this via :
tile_sz_x/y for OpenMP
nproc_x/y for MPI
But for most applications the default 
will work okay 9



WRF Parallelism

2D Domain Decomposition

Legend / Terminology

Process (MPI) - 

Thread (OpenMP) -

If our processor
only has room for
N threads performance
can drop due to 
oversubscribed 
resources

Recall our analogy : At a certain 
point, tasking more people to do a 
job without increasing appropriate 
resources leads to congestion and 
resource contention
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Eventually we are at the 
limit of what an 
individual processor 
can handle,
i.e. we need more 
resources than what a 
single processor can 
offer



WRF Parallelism

2D Domain Decomposition

Legend / Terminology

Process (MPI) - 

Thread (OpenMP) -

We can instead allocate
more resources per
division by instead using
MPI processes to create
patches - areas of 
separate distributed memory

Take for instance this patch

Its boundary resides in other 
patches outside its memory space

For better performance at larger 
scales we might want to allow our 
divisions of our domain to operate in 
separate memory locations…

These reside in different memory 
spaces - now our boundaries 
cannot communicate 
with each other 
immediately…

These can be further separated into smaller 
tiles but we will avoid that for now 

patch
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WRF Parallelism

Halo Exchanges

Halo exchanges are a 
necessary incurred latency cost 
to coordinating patches 

This is a critical component of 
how well WRF scales

We need these 
cells to compute 
tendencies in our 
patch

Let’s look at an example 
of computing some 
regions

We might assume we can 
individually transfer all 
cells independently at the 
same time…

But in reality if we only 
have one process, it 
would have to go 
back-and-forth between 
computations paying the 
cost each time

Recall our analogy :
Even if we had more 
processes, if we had each 
request handled 
separately, we’d pay the 
latency cost for each. 

It would be like sending 
15 people to the store to 
all get separate items in 
the same aisle for the 
same dish!
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WRF Parallelism

Halo Exchanges

Halo exchanges are a 
necessary incurred latency cost 
to coordinating patches 

This is a critical component of 
how well WRF scales Instead we can gather the 

cells all at once

This allows us to traverse 
the other patch in its local 
memory space, reducing 
latency

Now for any calculation 
along our patch border 
we no longer need to go 
out to a different memory 
space

Not shown here 

Once gathered, the 
boundary of the bordering 
patch is stored locally for 
faster access 

The same exact values in different locations

Recall our analogy : 
This might be like 
storing our ingredients 
in our particular pantry 
for quicker access

So now we know how to 
effectively do halo exchanges

Why do we need to talk about 
scaling? Can’t we just add 
more processes to go 
proportionally faster?

Let’s instead optimize our 
“route” to gather values
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WRF Parallelism

Limitations of Halo Exchanges

…

…

…

Thought experiment:
Using the shown number of 
cells in the diagrams, let’s say 
computation of 
- one cell takes 5 us
- aggregation of a cell for a 
halo exchange is 1 us
- the halo exchange itself 
takes 5 us

*These are arbitrary generalized values

If we continue to subdivide our 
domain into patches with more 
MPI tasks, we can start to see 
how the proportion of our 
boundary coordination begins 
to affect our performance gains

In our 1 process 
situation, while slow, all 
time is spent computing 
with no overhead on 
parallel coordination

Using an example patch 
of 15x15 cells our 
efficiency would be :
- 4 halo exchanges
  - each gathers 15 cells
- 15x15 cells computed
Yielding (225us)/(305us)
or 73.77% efficiency 

Slower, but more 
efficient..

5us

1us*5 ⇒ 5us

5us

With 4 halo exchanges the latency 
cost would be : 4 * ( 1us * 5 + 5us ) 
or 40us

Our computational efficiency could be 
described as

(time spend doing computation) 
(total time to do task)

Meaning for our average patch we are 
operating at 65.22% efficiency
with regards to halo exchange

Meanwhile the cost of the patch 
computation would be : 5 * 5 * 5us
or 75us

most 
common 

patch
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Smaller patches have decreased model runtime at the cost of lowered computational efficiency 
in part due to halo exchange and disproportionate shrinkage of area to perimeter, whereby the 
perimeter latency does not contribute to computational progress. Conversely, larger patches 
decrease speed but increase efficiency.

Halo exchanges are NOT the only form of latency and sole driving factor in reduction of 
efficiency, however they are a critical component and the concepts shown here further illustrate 
how other latencies may affect performance.

How does this all relate to actual runtimes? We know that if we add 2x processes, our speed up 
will likely not be 2x, but what will it actually be? How do we balance how many cores to allocate 
to get the desired speed increase?

WRF Parallelism

Limitations of Halo Exchanges
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WRF v4.5.2 1500x1500x50, 3km, CONUS Suite
● Domain

○ 1500 w/e x 1500 s/n
○ 50 vertical levels
○ 3km in dx and dy for cells

● Timesteps
○ 18s dt
○ 180s dt for rad steps
○ 12 minute simulation
○ 10hr spin-up then restart

● Options
○ No cumulus
○ Hybrid vertical activated
○ Moist theta

● No I/O done during timings

Run on Derecho 128-core nodes

WRF Parallelism

Scaling - Model Configuration

metgrid output of domain

16



Achieving perfect 1-to-1 performance increase with added parallelism would be the theoretical 
maximum, however recall that latency and parallel coordination overhead thwart our numbers!

The closest to perfect efficiency we can be in terms of no additional latencies is a single process 
doing everything slowly. We can use this as a baseline to create two types of plots to explore 
how WRF actually scales with respect to real domain decomposition :

WRF Parallelism

Scaling

← This looks as 
expected. A hyperbolic 
decay of timing almost 
characterized by 1/N

But this is difficult to 
view performance 
trends in a granular 
manner

This is a scaling plot → 
where we reinterpret 

the data with respect to 
some nominal value 

that constitutes perfect 
(100%) computational 

efficiency

Decreasing time to 
compute a model step is a 
good trend, but how 
good?

A plot of “how good”
We want to be at this line

Pe
rfe

ct
 S

ca
lin

g

We will be using this style of plot from now on
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WRF Parallelism

Scaling - Explanation of Plot

Trendline of relative performance to 
some defined metric

The metric we are comparing 
against.

The calculation for this is:
(metric time) * (metric proc #)

recorded time

This formula reparametrizes the 
values such that a time step in the 
prescribed metric is operating at 
100% efficiency, and for that 
specific metric the output will be 1 
(i.e. 100% performance). 

If 2x metric processors are used, an 
equivalent halving of the time to 
calculate the total simulation would 
be correctly represented as a 2, or 
200% performance increase. 

The spread of values from simulation 
run

This is not shown in most future 
plots since we are focusing on 
average performance

A perfect scaling line of 
x = y
Essentially, if we double 
x, y (our performance) 
will also double

Performance loss 
compared to metric, i.e. 
how much below 100% 
efficiency we are
This is how well we scale 
at this processor count

Average efficiency at this processor 
count is easy to calculate if 100% is 
x = y
For this point it would be : 
4580 / 20736 => 22.09%
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When 1 Processor is used as a metric, as 
soon as we add parallelization scaling 
drops off dramatically.

This metric heavily penalizes any latency 
that is not directly progressing the 
simulation computation.

Using a metric that captures realistic 
latency would be a more reasonable 
real-world comparison when looking at 
massive parallelization anyways

WRF Parallelism

Scaling - MPI Performance vs 1 Processor

Look how far off we are 
at maximum processors 
for this domain!
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Using 16 MPI ranks as a baseline metric 
properly represents a nominal amount of 
parallelization overhead, but does not 
account for internode communications 
when scaling beyond 1 node.

At maximum 22500 processors :
52.65% for non-rad timesteps
66.90% for radiation timesteps

WRF Parallelism

Scaling - MPI Performance vs 16 Processor

Choosing a useful metric as a baseline is critical to presenting scaling as it is inherently relative

We can see that our radiation timesteps at 
larger processor counts continues to scale 
better than our normal timesteps. 
Radiation steps often take longer, so why 
might they appear to scale better?
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Recall the concepts learned from the halo 
exchange thought experiment :

Better computational efficiency is 
associated with a higher proportion of time 
spent doing the computation vs total time 
to perform the task.

WRF Parallelism

Scaling - MPI Performance vs 16 Processor

Computationally expensive tasks may generally have stronger scaling 21

Radiation time steps are computationally 
expensive and thus more time is spent on 
the cell computation than the parallel 
coordination in general.

This trend continues stronger than the 
analogous main timesteps that start to 
become more dominated by parallel 
overhead.



To better characterize massive 
parallelization we might set our baseline to 
256 processors for our use case. This 
makes total use of two nodes and 
captures the first latencies of internode 
communications.

WRF Parallelism

Scaling - MPI Performance vs 256 Processor

But now we have our performance going 
beyond the “theoretical” limit of scaling. 
How?

This is referred to as superlinear scaling
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WRF Parallelism

Scaling - MPI Performance vs 256 Processor

Recall that these are reinterpretations of 
performance to some baseline, and in 
these runs we are simply outperforming 
that baseline.

One might still ask:
● How are we outperforming that baseline? 
● Wasn’t 1 process the most efficient?
● All nodes are fully occupied, and all 

processes still get the same resources, so 
processes are not working with any more 
or less resources, right?

Recall our analogy : Everyone 
might have the same resources, 
but with less work per person 
they might be less overwhelmed 
and work more efficiently now

A possible explanation could be due to domain 
decomposition each process has more resources 
relative to the size of computation now, getting 
an effective performance boost in areas where 
computation was resource constrained
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What does scaling look like within a node?

WRF Parallelism

Scaling - MPI vs OMP vs 1 Processor (Single Node)

OpenMP Scaling

Larger 
discrepancy

Less linear scaling within a node than MPI
● Possibly due to more coupled usage of 

computing resources when within the 
same shared memory space

Large discrepancy between radiation timesteps 
scaling

● Possibly due to the same thing that affords 
rad steps better scaling exacerbates MPI 
vs OpenMP 

○ Computationally intensive with 
potentially many resources used

○ Threads within the same memory 
space might be thrashing each other

Recall our analogy : Once “full”, adding more people to the same 
table is less effective than giving everyone a separate table even if 
the same total surface area is used to isolate workspaces

OpenMP slightly performed better until this point 24



WRF Parallelism

Scaling - Nested Domains

Processing of nested domains requires propagating forward 1 timestep in the parent beforehand 
to generate lateral boundary conditions

● Nested domain layers are inherently a serialized process
● All available cores are used to quickly go through a timestep
● Parent domains and nested domains use the same number of processors for domain 

decomposition
● Domain decomposition is limited to 10x10 cell sizes
● The cost of nested domain steps can easily dominate the total cost of a simulation

If the nested domain has a significantly higher number of cells than the parent domain, the 
parent domain will limit the number of processors able to be used for domain decomposition 
even though it is less computationally expensive!
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Example: A 500x500 parent domain with a nested domain of size 250x250 in parent grid cells 
with a grid ratio of 3 and a timestep ratio of 3 as well - totaling 750x750 grid cells.

The nested domain would have a cell amount 2.25x more than the parent! Our parent domain is 
limited to a domain decomposition of 50x50, or 2500 processors, whereas our nested domain 
would be limited to 75x75, or 5625 processors. 

WRF Parallelism

Scaling - Nested Domains
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If the parent domain computation takes only 13% of the total time, 
we would be throttling our scaling to something that only makes a 
minimal impact on our total runtime.

Try to make your nested and parent domain total cell sizes at least match to 
maximize scaling of the two.

Keeping the nested domain the same size, if we increase the parent 
domain to size 750x750, we now have the same limit on scaling for 
both domains. This would make the parent domain take 25% of our
total runtime, but now with the ability to add >2x processors



WRF Computation

Summary
Maximizing computational performance depends on many factors, including what 
performance metric you are trying to optimize - time vs efficiency.

Latency, especially overhead of memory access and parallel software coordination, play a fundamental role in how 
well software can be accelerated.

Due to the dynamics involved in NWP, as we continue to partition out smaller workloads via domain decomposition 
coordination of lateral boundary conditions - such as with halo exchanges - are a significant factor in limiting how 
well WRF can scale.

Understanding scaling works best if one understands the baseline metric used to scale against and the implications of 
that chosen scale.

Computationally expensive tasks may exhibit stronger overall scaling as the overhead of parallelization is not as 
prevalent as workload decreases.

Using a scaling graph, we can better understand how to balance expected runtime and performance increase to our 
available computing resources.

When seeking to maximize scaling of a nested domain, consider the limitations the parent domain has and 
appropriately scale the parent to allow the nested domain to reach peak scaling. 27
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WRF Computation

MPI Timings 1500x1500x50, 3km, CONUS Suite vs 256 proc
Processor 

Count
i dim j dim Main(s) Rad(s) Main Perf Rad Perf Main Scaling Rad Scaling

1 1500 1500 248.24584 1123.70343 3.78431 1.88983 3.78431 1.88983
4 750 750 80.91518 311.41487 11.61019 6.81923 2.90255 1.70481

16 375 375 41.32153 101.12227 22.73489 21.00042 1.42093 1.31253
32 375 188 25.64082 55.92232 36.63847 37.97429 1.14495 1.1867
64 188 188 13.20109 31.75976 71.16385 66.86482 1.11194 1.04476

128 188 94 7.27732 16.53463 129.09157 128.43413 1.00853 1.00339
256 94 94 3.66969 8.29535 256 256 1 1
512 94 47 1.68862 4.19213 556.33762 506.57116 1.0866 0.9894
768 63 47 1.11251 2.74242 844.43655 774.35733 1.09953 1.00828

1024 47 47 0.8336 2.19742 1126.97118 966.41228 1.10056 0.94376
1536 47 32 0.52214 1.49019 1799.19726 1425.0602 1.17135 0.92777
2048 47 24 0.36948 1.08746 2542.61475 1952.81109 1.24151 0.95352
2560 38 24 0.29179 0.86425 3219.60759 2457.162 1.25766 0.95983
3584 27 24 0.22073 0.62501 4256.04498 3397.72236 1.18751 0.94803
4608 24 21 0.17076 0.48489 5501.47099 4379.57156 1.1939 0.95043
5888 24 17 0.12879 0.36253 7294.12193 5857.80481 1.23881 0.99487
7168 24 14 0.10844 0.2916 8663.24937 7282.61472 1.2086 1.01599
8960 19 14 0.09053 0.23812 10377.24385 8918.36125 1.15817 0.99535

11520 16 13 0.07559 0.19506 12427.41864 10886.96018 1.07877 0.94505
15616 13 12 0.0638 0.14779 14725.28336 14369.43197 0.94296 0.92017
20736 11 11 0.05421 0.11534 17330.805 18411.74314 0.83578 0.88791
22500 10 10 0.05237 0.10833 17939.37758 19602.55803 0.79731 0.87122
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Using the concepts built up, we can better understand typical parallelization techniques :
- Independent tasks for reading/writing to “disk” (isolate slowest memory accesses)
- Load data in chunks, and localize common data to similar regions for quick access
- Defer synchronization/coordination events until necessary and group these events together
- Where possible make tasking instructions (software) generally the same and independent 

for bulk repeating tasks as these can then be split up without impacting other tasking

Splitting tasking to max the amount of work each worker does 
without stopping for other tasks can vastly increase our 
real-world time cost.

Parallel Processing

Typical Usage / Techniques

NVIDIA : Optimizing Parallel 
Reduction in CUDA

Each reduction step is a 
synchronization + is mindful of 

the location of memory
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