

An Introduction to the WRF Modeling System

Wei Wang

WRF Virtual Tutorial, July 2025

Mesoscale and Microscale Meteorology Laboratory, NCAR

Outline

- What is WRF?
 - A brief history of WRF
 - WRF applications
- Some basic concepts about limited area modeling
- What does WRF look like to you, the user?
- What is covered in this tutorial?
- What should you expect to gain from this tutorial?

What is WRF?

- WRF: Weather Research and Forecasting Model
- It is a supported “**community model**”, i.e. a free and shared resource with **distributed development and support**
- Its early development was led by NCAR, NOAA/GSL and NOAA/NCEP/EMC in early years with partnerships at AFWA, FAA, DOE/PNNL and collaborations with universities and other government agencies in the US and overseas.

WRF Community Model

- Version 1.0 WRF was released December 2000
- Version 2.0: May 2004 (added nesting)
- Version 3.0: April 2008 (added global ARW version)
- Version 3.9: April 2017
- Version 4.0 (June 2018)
- Version 4.1 (April 2019)
- Version 4.2 (April 2020)
- Version 4.3 (May 2021)
- Version 4.4 (April 2022)
- Version 4.5 (April 2023)
- Version 4.6 (April 2024)
 - Version 4.6.1
- Version 4.7 (April 2025) – last major release
 - Version 4.7.1 (June 2, 2025) – bug-fix release

WRF Version v4.7.0

The WRF model has been update to Version v4.7.0 on April 25, 2025

Acknowledgements: We would like to thank

- Adam Dury (WeatherQuest)
- Andrea Zonato, Royal Netherlands Meteorological Institute (KNMI)
- Benjamin Kirk & Negin Sobhani (NSF NCAR / CISL)
- Cenlin He @cenlinhe and Tzu-Shun Lin (NCAR)
- Charlie Li, software developer from lakes environmental, Canada
- Jakub Lewandowski (University of Leeds)
- James Ruppert (University of Oklahoma)

<https://github.com/wrf-model/WRF.git>

WRF Users

As of June 2025:

No. of countries: 185

No. of users: 70,560

US: 22,020 (~ 31%)

Others: 48,530

Pub: ~ 12303 (2024/12)

WRF Registration by Categories 2000-2025

What is WRF-ARW?

- WRF-ARW: **The Advanced Research WRF (ARW)**
 - WRF and WRF-ARW are synonymous.
 - Referring to its dynamical core: includes mostly advection, pressure-gradients, Coriolis, buoyancy, filters, diffusion, and time-stepping.
 - Since WRF v4.3.1, this is the only dynamical core.
- WRF-ARW or WRF: its development, maintenance and support are centered at NCAR/MMM

What is WRF?

- A research tool:

Idealized simulations →

← Experimental real-time forecast

What is WRF?

- A research tool:

Convection forecast →

← High-resolution hurricane simulations

Development of ensemble forecasting technology →

What is WRF?

- A research tool:

Regional Climate Modeling →

← Data assimilation (*analysis increments*)

WRF-Chemistry →
(O₃ forecast)

What can WRF be used for?

- A tool for research
 - Develop and test physical parameterizations
 - Case-study research for specific weather events
 - Regional climate studies
 - Coupled-chemistry, fire, and hydrological applications
 - Data assimilation research
 - Teaching modeling and NWP
- A tool for numerical weather prediction
 - Hind-casting
 - Real-time (operational) forecasting
 - Forecasting for wind, solar and air quality (online and offline)

Some basic concepts

- How does a model work and what does time integration mean?

$$\frac{\Delta A}{\Delta t} = F(A)$$

ΔA = change in a forecast variable at a particular point in space

$F(A)$ = represents the dynamical and physical processes that can change the value of A

Δt = change in time

So a forecast at time N can be written as

$$A^{n=1} = A^{n=0} + F(A^{n=0}) \Delta t$$

$$A^{n+1} = A^n + F(A^n) \Delta t$$

(adapted from COMET)

Some basic concepts

- How are data represented, and equations solved on a model grid?

(from COMET)

Some basic concepts

- What is a LAM (Limited Area Model)?

Some basic concepts

- What is a LBC (lateral boundary condition)?

(from COMET)

Some basic concepts

- Nesting in limited area model

Some basic concepts

- Why nesting? An efficient way to obtain high resolution model solutions.

Terrain

Landuse

30 km

10 km

1 km

Some basic concepts

- A 3D view of LAM

(partially from COMET)

What does WRF look like to a user?

- A set of programs (mostly in Fortran) and executables
 - No GUI;
 - Command-line;
 - Simple graphic tools to use along the way.

What does WRF look like to a user?

- A set of programs (mostly in Fortran) and executables
 - No GUI;
 - Command-line;
 - Simple graphic tools to use along the way.

```
wind-turbine-1.tbl
> tar -xf WRF-4.1.2.tar.gz
> cd WRF-4.1.2
> configure
> compile em_real >& compile.log &
> cd run/
> ln -s ../../WPS-4.1/met_em.d01.* .
> mpirun -np 4 real.exe
> ls -l wrfout* wrfbdy*
> mpirun -np 8 wrf.exe
~
```


What does WRF look like to a user?

- A set of programs (mostly in Fortran) and executables
 - No GUI;
 - Command-line;
 - Simple graphic tools to use along the way.

What does WRF look like to a user?

- A set of programs (mostly in Fortran) and executables
 - No GUI;
 - Command-line;
 - Simple graphic tools to use along the way.
- The modeling system programs have many functionalities
 - Many different ways to run a model;
 - Decisions needed at every step (input data, domain configuration, model options, etc.);
 - Best practices required.

WRF Modeling System Flow Chart

WPS and WRF Program Flow

For a real-data application

What will you learn in this tutorial?

a. Configuration of simulation domains

What will you learn in this tutorial?

- a. Configuration of simulation domains
- b. Preparation of data for initial and boundary conditions

What will you learn in this tutorial?

- a. Configuration of simulation domains
- b. Preparation of data for initial and boundary conditions
- c. Running the model

What will you learn in this tutorial?

- a. Configuration of simulation domains
- b. Preparation of data for initial and boundary conditions
- c. Running the model
- d. Model internals:
 - i. Dynamics: formulation of compressible, non-hydrostatic equations

$$\frac{\partial W}{\partial t} + g \left(\mu_d - \frac{\alpha}{\alpha_d} \frac{\partial p}{\partial \eta} \right) = - \frac{\partial U w}{\partial x} - \frac{\partial \Omega w}{\partial \eta}$$

$$\frac{\partial \mu_d}{\partial t} + \frac{\partial U}{\partial x} + \frac{\partial \Omega}{\partial \eta} = 0$$

$$\frac{\partial \Theta}{\partial t} + \frac{\partial U \theta}{\partial x} + \frac{\partial \Omega \theta}{\partial \eta} = \mu Q$$

$$\frac{d\phi}{dt} = g w$$

What will you learn in this tutorial?

- a. Configuration of simulation domains
- b. Preparation of data for initial and boundary conditions
- c. Running the model
- d. Model internals:
 - i. Dynamics: formulation of compressible, non-hydrostatic equations
 - ii. Numerics: how to solve equations numerically

What will you learn in this tutorial?

- a. Configuration of simulation domains
- b. Preparation of data for initial and boundary conditions
- c. Running the model
- d. Model internals:
 - i. Dynamics: formulation of compressible, non-hydrostatic equations
 - ii. Numerics: how to solve equations numerically
 - iii. Physics: how are physical processes are represented

What will you learn in this tutorial?

- a. Configuration of simulation domains
- b. Preparation of data for initial and boundary conditions
- c. Running the model
- d. Model internals:
 - i. Dynamics: formulation of compressible, non-hydrostatic equations
 - ii. Numerics: how to solve equations numerically
 - iii. Physics: how are physical processes in the atmosphere are represented
 - iv. parallel computing

What will you learn in this tutorial?

- a. Configuration of simulation domains
- b. Preparation of data for initial and boundary conditions
- c. Running the model
- d. Model internals:
 - i. Dynamics: formulation of compressible,...
 - ii. Numerics: how to solve equations numer...
 - iii. Physics: how are physical processes in th...
 - iv. Software and parallel computing
- e. Tools to view and analyze model output

What will you learn in this tutorial?

- a. Configuration of simulation domains
- b. Preparation of data for initial and boundary conditions
- c. Running the model
- d. Model internals:
 - i. Dynamics: formulation of compressible, non-hydrostatic equations
 - ii. Numerics: how to solve equations numerically
 - iii. Physics: how are physical processes in the atmosphere are represented
 - iv. Software and parallel computing
- e. Tools to view and analyze model output
- f. How to compile the modeling system code

What will you learn in this tutorial?

- a. Configuration of simulation domains
- b. Preparation of data for initial and boundary conditions
- c. Running the model
- d. Model internals:
 - i. Dynamics: formulation of compressible, non-hydrostatic equations
 - ii. Numerics: how to solve equations numerically
 - iii. Physics: how are physical processes in the atmosphere are represented
 - iv. Software and parallel computing
- e. Tools to view and analyze model output
- f. How to compile the modeling system code
- g. Best practices and verifying model output

What will you gain from this tutorial?

- a. Knowledge needed to run WRF for basic applications
 - i. Some understanding on how the model works
 - ii. Familiarity with the process to run the model
- b. Recognize what you learn here is a starting point
 - i. Continue to learn after the tutorial
 - ii. Read more and experiment
 - iii. Practice, practice, and practice...
- c. Full tutorial slides are available at
<https://www2.mmm.ucar.edu/wrf/users/tutorial/tutorial.html>

Reading (watch) Materials

Numerical Weather and Climate Prediction, 2011. By Thomas Warner, *Cambridge University Press*.

Warner, T., 2011. Quality assurance in atmospheric modeling. *Bull. Amer. Met. Soc. Dec. issue*, p1601 – 1611.

Stensrud, D., 2007. Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. *Cambridge University Press*.

Haltiner G. and R. Williams, 1980. Numerical Prediction and Dynamic Meteorology. *Wiley*.

Hong, S-Y: Fundamentals in Atmospheric Modeling. *wrfhelp YouTube channel*.

