If a NaN occurs in any of the columns it indicates there is no data, or no information for that time. i.e. When there is no LDAR data available (e.g. 000604), the column is replaced with NaN. If a single radar grid point did not have a valid return value NaN was used instead of a "bad data" value. In this way, the IDL code that does the plotting and other calculations could just skip over that point.
PARAMETER | EXPLANATION | |||||||||||||||||||||
date | flight day YYMMDD | |||||||||||||||||||||
HHMMSS | beginning time of 10 sec average in hours, minutes, seconds | |||||||||||||||||||||
sfm | beginning time of 10 sec average in seconds after midnight | |||||||||||||||||||||
x_pos | x position of the A/C relative to WSR74C radar at PAFB | |||||||||||||||||||||
y_pos | y position of the A/C relative to WSR74C radar at PAFB | |||||||||||||||||||||
POSLat | A/C Latitude recorded by INS (2000) or Applanix (2001) | |||||||||||||||||||||
POSLong | A/C Longitude recorded by INS or Applanix | |||||||||||||||||||||
POSRoll | bank angle of the A/C from INS or Applanix | |||||||||||||||||||||
POSPitch | pitch angle of the A/C from INS or Applanix | |||||||||||||||||||||
POSHead | true heading from North of the A/C from INS or Applanix | |||||||||||||||||||||
POSAlt | true altitude of the A/C from INS or Applanix [This altitude should be used for all analysis.] | |||||||||||||||||||||
TAS | true airspeed of the A/C | |||||||||||||||||||||
PressAlt | pressure altitude derived from the A/C measured temperature profile (differs from true altitude by about 300 to 500 m for ABFM altitudes) | |||||||||||||||||||||
Air_Temp | air temperature measured by the Rosemount Temp. Sensor | |||||||||||||||||||||
LIQ_H2O | Liquid Water Content measured by the King constant temp. sensor | |||||||||||||||||||||
Ice_D_LWC | Supercooled liquid water detected by the Rosemount Ice Detector | |||||||||||||||||||||
Wind_M_Nose | wind magnitude calculated from TAS measured by nose pitot | |||||||||||||||||||||
Wind_D_Nose | wind direction from the nose pitot (meteorological sense) | |||||||||||||||||||||
Wind_Z_Nose | vertical wind speed | |||||||||||||||||||||
Wind_M_Wing | wind magnitude calculated from TAS measured by Wing pitot [The winds from WING pitot are not as reliable as from the NOSE and should be used only if user is convinced they seem reasonable.] | |||||||||||||||||||||
Wind_D_Wing | wind direction from the Wing pitot | |||||||||||||||||||||
Turbulence | epsilon**1/3 derived from the TAS | |||||||||||||||||||||
Con_FSSP | Total part conc. from FSSP (see Microphysical Instrument Descriptions on the Report Page for description of all microphysical instruments.) | |||||||||||||||||||||
Tot_con_1DC | Total part. conc. from PMS 1D probe | |||||||||||||||||||||
Tot_con_2DC | Total part. conc. from PMS 2D probe | |||||||||||||||||||||
2DC_100_400 | part. conc. from 100 to 400 microns from 2D probe | |||||||||||||||||||||
2DC_400_1000 | part. conc. from 400 to 1000 microns from 2D probe | |||||||||||||||||||||
2DC_GT_1000 | conc. of parts. > 1000 microns from 2D probe | |||||||||||||||||||||
ACP_2DC | fraction of total parts. accepted in 2D processing -- a measure of probe performance; 1 = no problems | |||||||||||||||||||||
HVPS_GT_1000 | conc. of parts. > 1000 microns from HVPS | |||||||||||||||||||||
HVPS_GT_3000 | conc. of parts. > 3000 microns from HVPS | |||||||||||||||||||||
Ex_m | x component of E field derived from M matrix solution | |||||||||||||||||||||
Ey_m | y component of E field derived from M matrix solution | |||||||||||||||||||||
Ez_m | z component of E field derived from M matrix solution | |||||||||||||||||||||
Eq_m | E field due to charge on the aircraft | |||||||||||||||||||||
Em_m | total magnitude of E field from M solution | |||||||||||||||||||||
EqdivbyEmag | Eq divided by Emag; measure of quality of E measurement: magnitude > 10 may be questionable. | |||||||||||||||||||||
DBZATAC | reflectivity in the 1x1x1 km pixel at A/C location | |||||||||||||||||||||
COLFRAC1X1 | fraction of pixels with detectable return &ge -10 dBZ in the single km column containing the aircraft from 5 km to 20 km | |||||||||||||||||||||
ColSum1x1 | sum of dBZ with detectable return &ge -10dBZ in 1x1 column from z = 5 km up | |||||||||||||||||||||
COLFRAC1X1_0 | the same as above except this is for detectable return &ge 0 dBZ | |||||||||||||||||||||
ColSum1x1_0 | the same as above except this is for detectable return &ge 0 dBZ | |||||||||||||||||||||
NUM11x11 | number of pixels with detectable return &ge -10dBZ in the 11x11 Column [the 11x11 Column extends 5 km N, S, W, and E of the 1x1 A/C location and from 5 to 20 km altitude.] | |||||||||||||||||||||
FRAC11X11 | fraction of pixels with detectable return &ge -10 dBZ in the 11x11 Column | |||||||||||||||||||||
MAX11x11 | maximum dBZ of any of the 1x1x1 pixels in the 11x11 Column | |||||||||||||||||||||
ALT_MAX11x11 | altitude of the pixel with maximum dBZ in 11x11 Column | |||||||||||||||||||||
AVG11x11 | average dBZ of all pixels with detectable return &ge -10 dBZ in 11x11 Column | |||||||||||||||||||||
THICK11x11 | This is the difference of top11x11 - max(base11x11, 5km). So if the base is below 5 km the thickness is taken to be top - 5 km, if the base is greater than 5 km then thick = top - base. (with detectable return &ge -10 dBZ) | |||||||||||||||||||||
VOLINT11X11 | avg11x11 x thick11x11 | |||||||||||||||||||||
SDEV11x11 | standard deviation of the dBZ average in the 11x11 Column (with detectable return &ge -10 dBZ) | |||||||||||||||||||||
TOP11x11 | average altitude of the top of the cloud in the 11x11 Column | |||||||||||||||||||||
BASE11x11 | average altitude of the base of the cloud in 11x11 Column. In order to avoid the existance of ground clutter, the logic was based on the column by column search for a base only if z > 2 km. | |||||||||||||||||||||
TOTSUM11X11 | This is the sum of all of the detectable data points in the 11x11x(5:20km) column (with detectable return &ge -10 dBZ) | |||||||||||||||||||||
ACINTSUM11X11 | ∑ [Avg(individual
columns) *
(columntop - columnbott + 1)] the sum is over the columns of the 11x11 box (with detectable return &ge -10 dBZ) | |||||||||||||||||||||
SUMAVG11X11 | horizontal averages were taken on each integer z-plane, then those values were summed. The averages were for &ge -10 dBZ. | |||||||||||||||||||||
| If a variable name includes the _0 then it is the same calculation as for the variable name with the exception that the cutoff was for detectable returns &ge 0 dBZ | |||||||||||||||||||||
NUMCUBE3x3 | number of pixels with detectable return in 3x3x3 km cube (for detectable returns &ge -10 dBZ) | |||||||||||||||||||||
MAXCUBE3X3 | Maximum reflectivity value within the 3x3x3km cube (for detectable returns &ge -10 dBZ) | |||||||||||||||||||||
ALT_MAXCUBE3X3 | The Altitude of the maximum reflectivity within the 3x3x3km cube (for detectable returns &ge -10 dBZ) | |||||||||||||||||||||
AVGCUBE3x3 | average dBZ in the 3x3x3km cube (for detectable returns &ge -10 dBZ) | |||||||||||||||||||||
SDEVCUBE3x3 | standard deviation of dBZ value of pixels in 3x3x3 cube (for detectable returns &ge -10 dBZ) | |||||||||||||||||||||
LDARm5 | number of sources during this 10sec period within +/- 20 km and minus 5 min. of present A/C location/time. | |||||||||||||||||||||
CGm5 | number of CG flashes from CGLSS within +/- 20 km and minus 5 min. of present A/C location/time. | |||||||||||||||||||||
LDARpm5 | number of sources during 10 sec period within +/- 20 km and plus and minus 5 min. of present A/C location/time. | |||||||||||||||||||||
CGpm5 | number of CG flashes from CGLSS within +/- 20 km and plus and 5 min. of present A/C location/time. | |||||||||||||||||||||
Etrans | particle size in microns of the cross over between field driven and diffusive attachment [See Electrical Decay Model for Anvil Clouds> by John Willett in ABFM Reports on Web.] | |||||||||||||||||||||
ETmScl | extrapolated time (secs) for decay of E field from 50 kV/m [See Report cited above.] | |||||||||||||||||||||
Cloud_Type | type of anvil observed during this 10sec period:
| |||||||||||||||||||||
Pass_num |
sequential number of pass for this flight;
shown in the form pass#.anvil# e.g. 9.2 = pass #9 in anvil #2; spirals are designated by an S on the end of this parameter, e.g., 7.1S = pass # 7 in anvil #1 was a spiral | |||||||||||||||||||||
invoid_74C | the A/C was in or within 10 km of the cone of
silence at z = 10 km above the 74C radar
1=A/C in cone of silence 0=A/C not in cone of silence | |||||||||||||||||||||
invoid_88C | as above but for the NEXRAD radar | |||||||||||||||||||||
core_20km | A/C was within 20km of a convective core with reflectivity
at 4km or higher of 35-40 dBZ or greater.
1=A/C is within 20 km of a core 0=A/C is not within 20 km of a core | |||||||||||||||||||||
atten_74C | there was attenuation of the 74C radar by either
intertevening precip or wet radome attenuation [See appropriate
Reports and list of times on
ABFM REPORTS web page.]
1=radar is attenuated 0=radar is not attenuated |