! This is a program that converts NMM data into WRF input data.
! No boundary data yet.
!
PROGRAM convert_graps,86
USE module_machine
USE module_domain
USE module_io_domain
USE module_driver_constants
USE module_bc
USE module_configure
USE module_timing
#ifdef DM_PARALLEL
USE module_dm
#endif
IMPLICIT NONE
REAL :: time , bdyfrq
INTEGER :: loop , levels_to_process
TYPE(domain) , POINTER :: keep_grid, grid_ptr, null_domain, grid
TYPE (grid_config_rec_type) :: config_flags
INTEGER :: number_at_same_level
INTEGER :: max_dom, domain_id
INTEGER :: id1 , id , ierr
INTEGER :: idum1, idum2
#ifdef DM_PARALLEL
INTEGER :: nbytes
INTEGER, PARAMETER :: configbuflen = 2*1024
INTEGER :: configbuf( configbuflen )
LOGICAL , EXTERNAL :: wrf_dm_on_monitor
#endif
INTEGER :: ids , ide , jds , jde , kds , kde
INTEGER :: ims , ime , jms , jme , kms , kme
INTEGER :: i , j , k , idts
INTEGER :: debug_level
CHARACTER (LEN=80) :: message
REAL , DIMENSION(:,:,:) , ALLOCATABLE :: ubdy3dtemp1 , vbdy3dtemp1 , tbdy3dtemp1 , pbdy3dtemp1 , qbdy3dtemp1
REAL , DIMENSION(:,: ) , ALLOCATABLE :: mbdy2dtemp1
REAL , DIMENSION(:,:,:) , ALLOCATABLE :: ubdy3dtemp2 , vbdy3dtemp2 , tbdy3dtemp2 , pbdy3dtemp2 , qbdy3dtemp2
REAL , DIMENSION(:,: ) , ALLOCATABLE :: mbdy2dtemp2
CHARACTER(LEN=24) :: previous_date , this_date , next_date
CHARACTER(LEN=19) :: start_date_char , end_date_char , current_date_char , next_date_char
CHARACTER(LEN= 4) :: loop_char
INTEGER :: start_year , start_month , start_day , start_hour , start_minute , start_second
INTEGER :: end_year , end_month , end_day , end_hour , end_minute , end_second
INTEGER :: interval_seconds , real_data_init_type
INTEGER :: time_loop_max , time_loop
CHARACTER (LEN=80) :: inpname , bdyname
! these are needed on some compilers, eg compaq/alpha, to
! permit pass by reference through the registry generated
! interface to med_read_graps, below
#ifdef DEREF_KLUDGE
INTEGER :: sm31 , em31 , sm32 , em32 , sm33 , em33
#endif
! Get the NAMELIST data for input.
! Define the name of this program (program_name defined in module_domain)
program_name = "REAL_EM V1.2 PREPROCESSOR"
#ifdef DM_PARALLEL
CALL disable_quilting
#endif
CALL init_modules
#ifdef DM_PARALLEL
IF ( wrf_dm_on_monitor() ) THEN
CALL initial_config
CALL get_config_as_buffer
( configbuf, configbuflen, nbytes )
CALL wrf_dm_bcast_bytes
( configbuf, nbytes )
CALL set_config_as_buffer
( configbuf, configbuflen )
ENDIF
CALL wrf_dm_initialize
#else
CALL initial_config
#endif
CALL get_debug_level
( debug_level )
CALL set_wrf_debug_level
( debug_level )
CALL wrf_message
( program_name )
! An available simple timer from the timing module.
NULLIFY( null_domain )
CALL alloc_and_configure_domain
( domain_id = 1 , &
grid = head_grid , &
parent = null_domain , &
kid = -1 )
CALL set_scalar_indices_from_config
( head_grid%id , idum1, idum2 )
grid => head_grid
CALL model_to_grid_config_rec
( grid%id , model_config_rec , config_flags )
IF ( config_flags%dyn_opt .NE. DYN_GRAPS ) THEN
CALL wrf_error_fatal
( "Wrong dyn_opt for GRAPS in namelist.input" )
ENDIF
print *,'start date=',model_config_rec%start_year(grid%id),model_config_rec%start_month(grid%id),&
model_config_rec%start_day(grid%id),model_config_rec%start_hour(grid%id)
print *,'end date=',model_config_rec%end_year(grid%id),model_config_rec%end_month(grid%id),&
model_config_rec%end_day(grid%id),model_config_rec%end_hour(grid%id)
print *,'interval =',model_config_rec%interval_seconds
print *,'init_typ =',model_config_rec%real_data_init_type
! Figure out the starting and ending dates in a character format.
start_year = model_config_rec%start_year (grid%id)
start_month = model_config_rec%start_month (grid%id)
start_day = model_config_rec%start_day (grid%id)
start_hour = model_config_rec%start_hour (grid%id)
start_minute = model_config_rec%start_minute(grid%id)
start_second = model_config_rec%start_second(grid%id)
end_year = model_config_rec% end_year (grid%id)
end_month = model_config_rec% end_month (grid%id)
end_day = model_config_rec% end_day (grid%id)
end_hour = model_config_rec% end_hour (grid%id)
end_minute = model_config_rec% end_minute(grid%id)
end_second = model_config_rec% end_second(grid%id)
interval_seconds = model_config_rec%interval_seconds
real_data_init_type = model_config_rec%real_data_init_type
WRITE ( start_date_char , FMT = '(I4.4,"-",I2.2,"-",I2.2,"_",I2.2,":",I2.2,":",I2.2)' ) &
start_year,start_month,start_day,start_hour,start_minute,start_second
WRITE ( end_date_char , FMT = '(I4.4,"-",I2.2,"-",I2.2,"_",I2.2,":",I2.2,":",I2.2)' ) &
end_year, end_month, end_day, end_hour, end_minute, end_second
! Figure out our loop count for the processing times.
time_loop = 1
PRINT '(A,I4,A,A,A)','Time period #',time_loop,' to process = ',start_date_char,'.'
current_date_char = start_date_char
loop_count : DO
CALL geth_newdate
( next_date_char , current_date_char , interval_seconds )
IF ( next_date_char .LT. end_date_char ) THEN
time_loop = time_loop + 1
PRINT '(A,I4,A,A,A)','Time period #',time_loop,' to process = ',next_date_char,'.'
current_date_char = next_date_char
ELSE IF ( next_date_char .EQ. end_date_char ) THEN
time_loop = time_loop + 1
PRINT '(A,I4,A,A,A)','Time period #',time_loop,' to process = ',next_date_char,'.'
PRINT '(A,I4,A)','Total analysis times to input = ',time_loop,'.'
time_loop_max = time_loop
EXIT loop_count
ELSE IF ( next_date_char .GT. end_date_char ) THEN
PRINT '(A,I4,A)','Total analysis times to input = ',time_loop,'.'
time_loop_max = time_loop
EXIT loop_count
END IF
END DO loop_count
! Here we define the initial time to process, for later use by the code.
current_date_char = start_date_char
start_date = start_date_char // '.0000'
current_date = start_date
bdyfrq = interval_seconds
CALL set_bdyfrq
( grid%id , bdyfrq )
CALL model_to_grid_config_rec
( grid%id , model_config_rec , config_flags )
! these are needed on some compilers, eg compaq/alpha, to
! permit pass by reference through the registry generated
! interface to med_read_graps, below
#ifdef DEREF_KLUDGE
sm31 = grid%sm31
em31 = grid%em31
sm32 = grid%sm32
em32 = grid%em32
sm33 = grid%sm33
em33 = grid%em33
write(0,*)'sm31,em31,sm32,em32,sm33,em33',sm31,em31,sm32,em32,sm33,em33
#endif
write(0,*)config_flags%grid_id
CALL read_graps ( head_grid, config_flags, &
!
#include "graps_actual_args.inc"
!
)
CALL init_wrfio
head_grid%input_from_file = .false.
head_grid%write_metadata = .false.
CALL construct_filename1
( inpname , 'wrfinput' , grid%id , 2 )
CALL open_w_dataset
( id1, TRIM(inpname) , head_grid , config_flags , output_model_input , "DATASET=INPUT", ierr )
head_grid%write_metadata = .true.
IF ( ierr .NE. 0 ) THEN
CALL wrf_error_fatal
( 'real: error opening wrfinput for writing' )
ENDIF
CALL calc_current_date
( head_grid%id , 0. )
current_date = current_date_char
head_grid%write_metadata = .true.
CALL output_model_input
( id1, head_grid , config_flags , ierr )
CALL close_dataset
( id1 , config_flags , "DATASET=INPUT" )
current_date = current_date_char
head_grid%write_metadata = .false.
CALL construct_filename1
( bdyname , 'wrfbdy' , grid%id , 2 )
CALL open_w_dataset
( id, TRIM(bdyname) , head_grid , config_flags , output_boundary , "DATASET=BOUNDARY", ierr )
head_grid%write_metadata = .true.
bdyfrq = interval_seconds
write(0,*)'2 bdyfrq: ',bdyfrq
CALL set_bdyfrq
( grid%id , bdyfrq )
IF ( ierr .NE. 0 ) THEN
CALL wrf_error_fatal
( 'real: error opening wrfbdy for writing' )
ENDIF
CALL calc_current_date
( grid%id , 0. )
current_date = current_date_char
CALL output_boundary
( id, head_grid , config_flags , ierr )
CALL close_dataset
( id , config_flags , "DATASET=BOUNDARY" )
#ifdef DM_PARALLEL
CALL wrf_dm_shutdown
#endif
STOP
#if 0
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
! Loop over each time period to process.
DO loop = 1 , time_loop_max
! Initialize the mother domain for this time period.
grid%input_from_file = .false.
CALL init_domain
( grid )
CALL model_to_grid_config_rec
( grid%id , model_config_rec , config_flags )
IF ( loop .EQ. 1 ) THEN
CALL init_wrfio
END IF
! There are different things that have to happen during different time loops.
! During EVERY time loop, EXCEPT the last, we output the starting values for the
! boundary data. During EVERY time loop, EXCEPT the first, we output the
! boundary tendency.
IF ( loop .EQ. 1 ) THEN
! Open the wrfinput file.
CALL construct_filename1
( inpname , 'wrfinput' , grid%id , 2 )
CALL open_w_dataset
( id1, TRIM(inpname) , head_grid , config_flags , output_model_input , "DATASET=INPUT", ierr )
IF ( ierr .NE. 0 ) THEN
CALL wrf_error_fatal
( 'real: error opening wrfinput for writing' )
ENDIF
! Various sizes that we need to be concerned about.
ids = grid%sd31
ide = grid%ed31
kds = grid%sd32
kde = grid%ed32
jds = grid%sd33
jde = grid%ed33
ims = grid%sm31
ime = grid%em31
kms = grid%sm32
kme = grid%em32
jms = grid%sm33
jme = grid%em33
print *, ids , ide , jds , jde , kds , kde
print *, ims , ime , jms , jme , kms , kme
! This is the space needed to save the current 3d data for use in computing
! the lateral boundary tendencies.
ALLOCATE ( ubdy3dtemp1(ims:ime,kms:kme,jms:jme) )
ALLOCATE ( vbdy3dtemp1(ims:ime,kms:kme,jms:jme) )
ALLOCATE ( tbdy3dtemp1(ims:ime,kms:kme,jms:jme) )
ALLOCATE ( pbdy3dtemp1(ims:ime,kms:kme,jms:jme) )
ALLOCATE ( qbdy3dtemp1(ims:ime,kms:kme,jms:jme) )
ALLOCATE ( mbdy2dtemp1(ims:ime, jms:jme) )
ALLOCATE ( ubdy3dtemp2(ims:ime,kms:kme,jms:jme) )
ALLOCATE ( vbdy3dtemp2(ims:ime,kms:kme,jms:jme) )
ALLOCATE ( tbdy3dtemp2(ims:ime,kms:kme,jms:jme) )
ALLOCATE ( pbdy3dtemp2(ims:ime,kms:kme,jms:jme) )
ALLOCATE ( qbdy3dtemp2(ims:ime,kms:kme,jms:jme) )
ALLOCATE ( mbdy2dtemp2(ims:ime, jms:jme) )
! Actually do work here - output the data!
CALL calc_current_date
( head_grid%id , 0. )
head_grid%write_metadata = .true.
CALL output_model_input
( id1, head_grid , config_flags , ierr )
CALL close_dataset
( id1 , config_flags , "DATASET=INPUT" )
! We need to save the 3d data to compute a difference during the next loop. Couple the
! 3d fields with total mu (mub + mu_1) and the stagger-specific map scale factor.
CALL couple
( grid%em_mu_1 , grid%em_mub , ubdy3dtemp1 , grid%em_u_1 , 'u' , grid%msfu , &
ids, ide, jds, jde, kds, kde, ims, ime, jms, jme, kms, kme, ids, ide, jds, jde, kds, kde )
CALL couple
( grid%em_mu_1 , grid%em_mub , vbdy3dtemp1 , grid%em_v_1 , 'v' , grid%msfv , &
ids, ide, jds, jde, kds, kde, ims, ime, jms, jme, kms, kme, ids, ide, jds, jde, kds, kde )
CALL couple
( grid%em_mu_1 , grid%em_mub , tbdy3dtemp1 , grid%em_t_1 , 't' , grid%msft , &
ids, ide, jds, jde, kds, kde, ims, ime, jms, jme, kms, kme, ids, ide, jds, jde, kds, kde )
CALL couple
( grid%em_mu_1 , grid%em_mub , pbdy3dtemp1 , grid%em_ph_1 , 'w' , grid%msft , &
ids, ide, jds, jde, kds, kde, ims, ime, jms, jme, kms, kme, ids, ide, jds, jde, kds, kde )
CALL couple
( grid%em_mu_1 , grid%em_mub , qbdy3dtemp1 , grid%moist_1(:,:,:,P_QV) , 't' , grid%msft , &
ids, ide, jds, jde, kds, kde, ims, ime, jms, jme, kms, kme, ids, ide, jds, jde, kds, kde )
mbdy2dtemp1 = grid%em_mu_1
! There are 2 components to the lateral boundaries. First, there is the starting
! point of this time period - just the outer few rows and columns.
CALL stuff_bdy
( ubdy3dtemp1 , grid%em_u_b , 'U' , ids , ide , jds , jde , kds , kde , &
ims , ime , jms , jme , kms , kme )
CALL stuff_bdy
( vbdy3dtemp1 , grid%em_v_b , 'V' , ids , ide , jds , jde , kds , kde , &
ims , ime , jms , jme , kms , kme )
CALL stuff_bdy
( tbdy3dtemp1 , grid%em_t_b , 'T' , ids , ide , jds , jde , kds , kde , &
ims , ime , jms , jme , kms , kme )
CALL stuff_bdy
( pbdy3dtemp1 , grid%em_ph_b , 'W' , ids , ide , jds , jde , kds , kde , &
ims , ime , jms , jme , kms , kme )
CALL stuff_bdy
( qbdy3dtemp1 , grid%em_rqv_b , 'T' , ids , ide , jds , jde , kds , kde , &
ims , ime , jms , jme , kms , kme )
CALL stuff_bdy2
( mbdy2dtemp1 , grid%em_mu_b , 'T' , ids , ide , jds , jde , kds , kde , &
ims , ime , jms , jme , kms , kme )
ELSE IF ( loop .GT. 1 ) THEN
CALL couple
( grid%em_mu_1 , grid%em_mub , ubdy3dtemp2 , grid%em_u_1 , 'u' , grid%msfu , &
ids, ide, jds, jde, kds, kde, ims, ime, jms, jme, kms, kme, ids, ide, jds, jde, kds, kde )
CALL couple
( grid%em_mu_1 , grid%em_mub , vbdy3dtemp2 , grid%em_v_1 , 'v' , grid%msfv , &
ids, ide, jds, jde, kds, kde, ims, ime, jms, jme, kms, kme, ids, ide, jds, jde, kds, kde )
CALL couple
( grid%em_mu_1 , grid%em_mub , tbdy3dtemp2 , grid%em_t_1 , 't' , grid%msft , &
ids, ide, jds, jde, kds, kde, ims, ime, jms, jme, kms, kme, ids, ide, jds, jde, kds, kde )
CALL couple
( grid%em_mu_1 , grid%em_mub , pbdy3dtemp2 , grid%em_ph_1 , 'w' , grid%msft , &
ids, ide, jds, jde, kds, kde, ims, ime, jms, jme, kms, kme, ids, ide, jds, jde, kds, kde )
CALL couple
( grid%em_mu_1 , grid%em_mub , qbdy3dtemp2 , grid%moist_1(:,:,:,P_QV) , 't' , grid%msft , &
ids, ide, jds, jde, kds, kde, ims, ime, jms, jme, kms, kme, ids, ide, jds, jde, kds, kde )
mbdy2dtemp2 = grid%em_mu_1
! During all of the loops after the first loop, we first compute the boundary
! tendencies with the current data values and the previously save information
! stored in the *bdy3dtemp1 arrays.
CALL stuff_bdytend
( ubdy3dtemp2 , ubdy3dtemp1 , REAL(interval_seconds) , grid%em_u_bt , 'U' , &
ids , ide , jds , jde , kds , kde , &
ims , ime , jms , jme , kms , kme )
CALL stuff_bdytend
( vbdy3dtemp2 , vbdy3dtemp1 , REAL(interval_seconds) , grid%em_v_bt , 'V' , &
ids , ide , jds , jde , kds , kde , &
ims , ime , jms , jme , kms , kme )
CALL stuff_bdytend
( tbdy3dtemp2 , tbdy3dtemp1 , REAL(interval_seconds) , grid%em_t_bt , 'T' , &
ids , ide , jds , jde , kds , kde , &
ims , ime , jms , jme , kms , kme )
CALL stuff_bdytend
( pbdy3dtemp2 , pbdy3dtemp1 , REAL(interval_seconds) , grid%em_ph_bt , 'W' , &
ids , ide , jds , jde , kds , kde , &
ims , ime , jms , jme , kms , kme )
CALL stuff_bdytend
( qbdy3dtemp2 , qbdy3dtemp1 , REAL(interval_seconds) , grid%em_rqv_bt , 'T' , &
ids , ide , jds , jde , kds , kde , &
ims , ime , jms , jme , kms , kme )
CALL stuff_bdytend2
( mbdy2dtemp2 , mbdy2dtemp1 , REAL(interval_seconds) , grid%em_mu_bt , 'T' , &
ids , ide , jds , jde , kds , kde , &
ims , ime , jms , jme , kms , kme )
! Open the boundary file.
IF ( loop .eq. 2 ) THEN
CALL construct_filename1
( bdyname , 'wrfbdy' , grid%id , 2 )
CALL open_w_dataset
( id, TRIM(bdyname) , head_grid , config_flags , output_boundary , "DATASET=BOUNDARY", ierr )
IF ( ierr .NE. 0 ) THEN
CALL wrf_error_fatal
( 'real: error opening wrfbdy for writing' )
ENDIF
head_grid%write_metadata = .true.
ELSE
head_grid%write_metadata = .false.
END IF
! Both pieces of the boundary data are now available to be written.
CALL output_boundary
( id, head_grid , config_flags , ierr )
! OK, for all of the loops, we output the initialzation data, which would allow us to
! start the model at any of the available analysis time periods.
WRITE ( loop_char , FMT = '(I4.4)' ) loop
! CALL open_w_dataset ( id1, 'wrfinput'//loop_char , head_grid , config_flags , output_model_input , "DATASET=INPUT", ierr )
! IF ( ierr .NE. 0 ) THEN
! CALL wrf_error_fatal( 'real: error opening wrfinput'//loop_char//' for writing' )
! ENDIF
head_grid%write_metadata = .true.
CALL calc_current_date
( grid%id , 0. )
head_grid%write_metadata = .true.
! CALL output_model_input ( id1, head_grid , config_flags , ierr )
! CALL close_dataset ( id1 , config_flags , "DATASET=INPUT" )
! Is this or is this not the last time time? We can remove some unnecessary
! stores if it is not.
IF ( loop .LT. time_loop_max ) THEN
! We need to save the 3d data to compute a difference during the next loop. Couple the
! 3d fields with total mu (mub + mu_1) and the stagger-specific map scale factor.
! We load up the boundary data again for use in the next loop.
ubdy3dtemp1 = ubdy3dtemp2
vbdy3dtemp1 = vbdy3dtemp2
tbdy3dtemp1 = tbdy3dtemp2
pbdy3dtemp1 = pbdy3dtemp2
qbdy3dtemp1 = qbdy3dtemp2
mbdy2dtemp1 = mbdy2dtemp2
! There are 2 components to the lateral boundaries. First, there is the starting
! point of this time period - just the outer few rows and columns.
CALL stuff_bdy
( ubdy3dtemp1 , grid%em_u_b , 'U' , ids , ide , jds , jde , kds , kde , &
ims , ime , jms , jme , kms , kme )
CALL stuff_bdy
( vbdy3dtemp1 , grid%em_v_b , 'V' , ids , ide , jds , jde , kds , kde , &
ims , ime , jms , jme , kms , kme )
CALL stuff_bdy
( tbdy3dtemp1 , grid%em_t_b , 'T' , ids , ide , jds , jde , kds , kde , &
ims , ime , jms , jme , kms , kme )
CALL stuff_bdy
( pbdy3dtemp1 , grid%em_ph_b , 'W' , ids , ide , jds , jde , kds , kde , &
ims , ime , jms , jme , kms , kme )
CALL stuff_bdy
( qbdy3dtemp1 , grid%em_rqv_b , 'T' , ids , ide , jds , jde , kds , kde , &
ims , ime , jms , jme , kms , kme )
CALL stuff_bdy2
( mbdy2dtemp1 , grid%em_mu_b , 'T' , ids , ide , jds , jde , kds , kde , &
ims , ime , jms , jme , kms , kme )
ELSE IF ( loop .EQ. time_loop_max ) THEN
! If this is the last time through here, we need to close the files.
CALL close_dataset
( id , config_flags , "DATASET=BOUNDARY" )
END IF
END IF
! Process which time now?
current_date_char = current_date(1:19)
CALL geth_newdate
( next_date_char , current_date_char , interval_seconds )
start_date = next_date_char // '.0000'
END DO
#ifdef DM_PARALLEL
CALL wrf_dm_shutdown
#endif
#endif
END PROGRAM convert_graps