! create an initial data set for the WRF model based on real data
PROGRAM real_data,93
USE module_machine
USE module_domain
USE module_initialize
USE module_io_domain
USE module_driver_constants
USE module_bc
USE module_configure
USE module_si_io_eh
USE module_timing
#ifdef DM_PARALLEL
USE module_dm
#endif
IMPLICIT NONE
REAL :: time , bdyfrq
INTEGER :: loop , levels_to_process
TYPE(domain) , POINTER :: keep_grid, grid_ptr, null_domain, grid
TYPE (grid_config_rec_type) :: config_flags
INTEGER :: number_at_same_level
INTEGER :: max_dom, domain_id
INTEGER :: id1 , id , ierr
INTEGER :: idum1, idum2
#ifdef DM_PARALLEL
INTEGER :: nbytes
INTEGER, PARAMETER :: configbuflen = 2*1024
INTEGER :: configbuf( configbuflen )
LOGICAL , EXTERNAL :: wrf_dm_on_monitor
#endif
INTEGER :: ids , ide , jds , jde , kds , kde
INTEGER :: ims , ime , jms , jme , kms , kme
INTEGER :: ips , ipe , jps , jpe , kps , kpe
INTEGER :: ijds , ijde , spec_bdy_width
INTEGER :: i , j , k , idts
CHARACTER (LEN=80) :: message
REAL , DIMENSION(:,:,:) , ALLOCATABLE :: ubdy3dtemp
REAL , DIMENSION(:,:,:) , ALLOCATABLE :: vbdy3dtemp
REAL , DIMENSION(:,:,:) , ALLOCATABLE :: tbdy3dtemp
REAL , DIMENSION(:,:,:) , ALLOCATABLE :: rbdy3dtemp
REAL , DIMENSION(:,:,:) , ALLOCATABLE :: qbdy3dtemp
REAL , DIMENSION(:,:,:) , ALLOCATABLE :: q3dtemp
CHARACTER(LEN=24) :: previous_date , this_date , next_date
CHARACTER(LEN=19) :: start_date_char , end_date_char , current_date_char , next_date_char
CHARACTER(LEN= 4) :: loop_char
INTEGER :: start_year , start_month , start_day , start_hour , start_minute , start_second
INTEGER :: end_year , end_month , end_day , end_hour , end_minute , end_second
INTEGER :: interval_seconds , real_data_init_type
INTEGER :: time_loop_max , time_loop
INTEGER :: debug_level
CHARACTER (LEN=80) :: inpname , bdyname
! Get the NAMELIST data for input.
! Define the name of this program (program_name defined in module_domain)
program_name = "REAL_EH V1.3 PREPROCESSOR"
#ifdef DM_PARALLEL
CALL disable_quilting
#endif
CALL init_modules
#ifdef DM_PARALLEL
IF ( wrf_dm_on_monitor() ) THEN
CALL initial_config
ENDIF
CALL get_config_as_buffer
( configbuf, configbuflen, nbytes )
CALL wrf_dm_bcast_bytes
( configbuf, nbytes )
CALL set_config_as_buffer
( configbuf, configbuflen )
CALL wrf_dm_initialize
#else
CALL initial_config
#endif
CALL wrf_message
( program_name )
CALL get_debug_level
( debug_level )
CALL set_wrf_debug_level
( debug_level )
! An available simple timer from the timing module.
NULLIFY( null_domain )
CALL alloc_and_configure_domain
( domain_id = 1 , &
local_time = 0 , &
grid = head_grid , &
parent = null_domain , &
kid = -1 )
CALL set_scalar_indices_from_config
( head_grid%id , idum1, idum2 )
grid => head_grid
CALL model_to_grid_config_rec
( grid%id , model_config_rec , config_flags )
print *,'start date=',model_config_rec%start_year(grid%id),model_config_rec%start_month(grid%id),&
model_config_rec%start_day(grid%id),model_config_rec%start_hour(grid%id)
print *,'end date=',model_config_rec%end_year(grid%id),model_config_rec%end_month(grid%id),&
model_config_rec%end_day(grid%id),model_config_rec%end_hour(grid%id)
print *,'interval =',model_config_rec%interval_seconds
print *,'init_typ =',model_config_rec%real_data_init_type
! CALL get_start_year (start_year )
! CALL get_start_month (start_month )
! CALL get_start_day (start_day )
! CALL get_start_hour (start_hour )
! CALL get_start_minute(start_minute)
! CALL get_start_second(start_second)
! CALL get_end_year (end_year )
! CALL get_end_month (end_month )
! CALL get_end_day (end_day )
! CALL get_end_hour (end_hour )
! CALL get_end_minute(end_minute)
! CALL get_end_second(end_second)
! CALL get_interval_seconds (interval_seconds)
! CALL get_real_data_init_type (real_data_init_type)
! Boundary width, scalar value.
spec_bdy_width = model_config_rec%spec_bdy_width
! Figure out the starting and ending dates in a character format.
start_year = model_config_rec%start_year (grid%id)
start_month = model_config_rec%start_month (grid%id)
start_day = model_config_rec%start_day (grid%id)
start_hour = model_config_rec%start_hour (grid%id)
start_minute = model_config_rec%start_minute(grid%id)
start_second = model_config_rec%start_second(grid%id)
end_year = model_config_rec% end_year (grid%id)
end_month = model_config_rec% end_month (grid%id)
end_day = model_config_rec% end_day (grid%id)
end_hour = model_config_rec% end_hour (grid%id)
end_minute = model_config_rec% end_minute(grid%id)
end_second = model_config_rec% end_second(grid%id)
interval_seconds = model_config_rec%interval_seconds
real_data_init_type = model_config_rec%real_data_init_type
print *,'start date=',start_year,start_month,start_day,start_hour
print *,'end date=',end_year,end_month,end_day,end_hour
print *,'interval =',interval_seconds
print *,'init_typ =',real_data_init_type
WRITE ( start_date_char , FMT = '(I4.4,"-",I2.2,"-",I2.2,"_",I2.2,":",I2.2,":",I2.2)' ) &
start_year,start_month,start_day,start_hour,start_minute,start_second
WRITE ( end_date_char , FMT = '(I4.4,"-",I2.2,"-",I2.2,"_",I2.2,":",I2.2,":",I2.2)' ) &
end_year, end_month, end_day, end_hour, end_minute, end_second
print *,'start date=',start_date_char
print *,' end date=', end_date_char
! Figure out our loop count for the processing times.
time_loop = 1
PRINT '(A,I4,A,A,A)','Time period #',time_loop,' to process = ',start_date_char,'.'
current_date_char = start_date_char
loop_count : DO
CALL geth_newdate
( next_date_char , current_date_char , interval_seconds )
IF ( next_date_char .LT. end_date_char ) THEN
time_loop = time_loop + 1
PRINT '(A,I4,A,A,A)','Time period #',time_loop,' to process = ',next_date_char,'.'
current_date_char = next_date_char
ELSE IF ( next_date_char .EQ. end_date_char ) THEN
time_loop = time_loop + 1
PRINT '(A,I4,A,A,A)','Time period #',time_loop,' to process = ',next_date_char,'.'
PRINT '(A,I4,A)','Total analysis times to input = ',time_loop,'.'
time_loop_max = time_loop
EXIT loop_count
ELSE IF ( next_date_char .GT. end_date_char ) THEN
PRINT '(A,I4,A)','Total analysis times to input = ',time_loop,'.'
time_loop_max = time_loop
EXIT loop_count
END IF
END DO loop_count
! Here we define the initial time to process, for later use by the code.
current_date_char = start_date_char
start_date = start_date_char // '.0000'
current_date = start_date
bdyfrq = interval_seconds
CALL set_bdyfrq
( grid%id , bdyfrq )
print *,'interval_seconds=',interval_seconds
! Loop over each time period to process.
DO loop = 1 , time_loop_max
! Initialize the mother domain for this time period.
print *,'current date = ',current_date
grid%input_from_file = .false.
CALL init_domain
( grid )
CALL model_to_grid_config_rec
( grid%id , model_config_rec , config_flags )
IF ( loop .EQ. 1 ) THEN
CALL init_wrfio
END IF
! There are different things that have to happen during different time loops.
IF ( loop .EQ. 1 ) THEN
! Open the wrfinput file.
CALL construct_filename1
( inpname , 'wrfinput' , grid%id , 2 )
CALL open_w_dataset
( id1, TRIM(inpname) , head_grid , config_flags , output_model_input , "DATASET=INPUT", ierr )
IF ( ierr .NE. 0 ) THEN
CALL wrf_error_fatal
( 'real: error opening wrfinput for writing' )
ENDIF
! Various sizes that we need to be concerned about.
ids = grid%sd31
ide = grid%ed31
kds = grid%sd32
kde = grid%ed32
jds = grid%sd33
jde = grid%ed33
ims = grid%sm31
ime = grid%em31
kms = grid%sm32
kme = grid%em32
jms = grid%sm33
jme = grid%em33
ips = grid%sp31
ipe = grid%ep31
kps = grid%sp32
kpe = grid%ep32
jps = grid%sp33
jpe = grid%ep33
ijds = MIN ( ids , jds )
ijde = MAX ( ide , jde )
print *, ids , ide , jds , jde , kds , kde
print *, ims , ime , jms , jme , kms , kme
print *, ips , ipe , jps , jpe , kps , kpe
print *, ijds , ijde
print *,'spec_bdy_width=',spec_bdy_width
! This is the space needed to save the current 3d data for use in computing
! the lateral boundary tendencies.
ALLOCATE ( ubdy3dtemp(ims:ime,kms:kme,jms:jme) )
ALLOCATE ( vbdy3dtemp(ims:ime,kms:kme,jms:jme) )
ALLOCATE ( tbdy3dtemp(ims:ime,kms:kme,jms:jme) )
ALLOCATE ( rbdy3dtemp(ims:ime,kms:kme,jms:jme) )
ALLOCATE ( qbdy3dtemp(ims:ime,kms:kme,jms:jme) )
ALLOCATE ( q3dtemp (ims:ime,kms:kme,jms:jme) )
! Actually do work here - output the data!
CALL calc_current_date
( grid%id , 0. )
head_grid%write_metadata = .true.
CALL output_model_input
( id1, head_grid , config_flags , ierr )
CALL close_dataset
( id1 , config_flags , "DATASET=INPUT" )
! There are 2 components to the lateral boundaries. First, there is the starting
! point of this time period - just the outer few rows and columns.
CALL stuff_bdy
( grid%eh_ru_1 , grid%eh_ru_b , 'U' , ijds , ijde , spec_bdy_width , &
ids , ide , jds , jde , kds , kde , &
ims , ime , jms , jme , kms , kme , &
ips , ipe , jps , jpe , kps , kpe )
CALL stuff_bdy
( grid%eh_rv_1 , grid%eh_rv_b , 'V' , ijds , ijde , spec_bdy_width , &
ids , ide , jds , jde , kds , kde , &
ims , ime , jms , jme , kms , kme , &
ips , ipe , jps , jpe , kps , kpe )
CALL stuff_bdy
( grid%eh_rtp_1 , grid%eh_rtp_b , 'T' , ijds , ijde , spec_bdy_width , &
ids , ide , jds , jde , kds , kde , &
ims , ime , jms , jme , kms , kme , &
ips , ipe , jps , jpe , kps , kpe )
CALL stuff_bdy
( grid%eh_rrp_1 , grid%eh_rrp_b , 'T' , ijds , ijde , spec_bdy_width , &
ids , ide , jds , jde , kds , kde , &
ims , ime , jms , jme , kms , kme , &
ips , ipe , jps , jpe , kps , kpe )
DO j = jps , MIN(jde-1,jpe)
DO k = kps , kpe
DO i = ips , MIN(ide-1,ipe)
q3dtemp(i,k,j) = grid%moist_1(i,k,j,P_QV)*grid%eh_rr_1(i,k,j)
END DO
END DO
END DO
CALL stuff_bdy
( q3dtemp , grid%eh_rqv_b , 'T' , ijds , ijde , spec_bdy_width , &
ids , ide , jds , jde , kds , kde , &
ims , ime , jms , jme , kms , kme , &
ips , ipe , jps , jpe , kps , kpe )
! We need to save the 3d data to compute a difference during the next loop.
DO j = jps , jpe
DO k = kps , kpe
DO i = ips , ipe
ubdy3dtemp(i,k,j) = grid%eh_ru_1(i,k,j)
vbdy3dtemp(i,k,j) = grid%eh_rv_1(i,k,j)
tbdy3dtemp(i,k,j) = grid%eh_rtp_1(i,k,j)
rbdy3dtemp(i,k,j) = grid%eh_rrp_1(i,k,j)
qbdy3dtemp(i,k,j) = grid%moist_1(i,k,j,P_QV) * grid%eh_rr_1(i,k,j)
END DO
END DO
END DO
ELSE IF ( loop .GT. 1 ) THEN
! During all of the loops after the first loop, we first compute the boundary
! tendencies with the current data values and the previously save information
! stored in the *bdy3dtemp arrays.
CALL stuff_bdytend
( grid%eh_ru_1 , ubdy3dtemp , REAL(interval_seconds) , grid%eh_ru_bt , 'U' , &
ijds , ijde , spec_bdy_width , &
ids , ide , jds , jde , kds , kde , &
ims , ime , jms , jme , kms , kme , &
ips , ipe , jps , jpe , kps , kpe )
CALL stuff_bdytend
( grid%eh_rv_1 , vbdy3dtemp , REAL(interval_seconds) , grid%eh_rv_bt , 'V' , &
ijds , ijde , spec_bdy_width , &
ids , ide , jds , jde , kds , kde , &
ims , ime , jms , jme , kms , kme , &
ips , ipe , jps , jpe , kps , kpe )
CALL stuff_bdytend
( grid%eh_rtp_1 , tbdy3dtemp , REAL(interval_seconds) , grid%eh_rtp_bt , 'T' , &
ijds , ijde , spec_bdy_width , &
ids , ide , jds , jde , kds , kde , &
ims , ime , jms , jme , kms , kme , &
ips , ipe , jps , jpe , kps , kpe )
CALL stuff_bdytend
( grid%eh_rrp_1 , rbdy3dtemp , REAL(interval_seconds) , grid%eh_rrp_bt , 'T' , &
ijds , ijde , spec_bdy_width , &
ids , ide , jds , jde , kds , kde , &
ims , ime , jms , jme , kms , kme , &
ips , ipe , jps , jpe , kps , kpe )
DO j = jps , MIN(jde-1,jpe)
DO k = kps , kpe
DO i = ips , MIN(ide-1,ipe)
q3dtemp(i,k,j) = grid%moist_1(i,k,j,P_QV)*grid%eh_rr_1(i,k,j)
END DO
END DO
END DO
CALL stuff_bdytend
( q3dtemp , qbdy3dtemp , REAL(interval_seconds) , grid%eh_rqv_bt , 'T' , &
ijds , ijde , spec_bdy_width , &
ids , ide , jds , jde , kds , kde , &
ims , ime , jms , jme , kms , kme , &
ips , ipe , jps , jpe , kps , kpe )
! Open the boundary file.
IF ( loop .eq. 2 ) THEN
CALL construct_filename1
( bdyname , 'wrfbdy' , grid%id , 2 )
CALL open_w_dataset
( id, TRIM(bdyname) , head_grid , config_flags , output_boundary , "DATASET=BOUNDARY", ierr )
IF ( ierr .NE. 0 ) THEN
CALL wrf_error_fatal
( 'real: error opening wrfbdy for writing' )
ENDIF
head_grid%write_metadata = .true.
ELSE
head_grid%write_metadata = .false.
END IF
! Both pieces of the boundary data are now available to be written.
CALL output_boundary
( id, head_grid , config_flags , ierr )
! OK, for all of the loops, we output the initialization data, which would allow us to
! start the model at any of the available analysis time periods.
WRITE ( loop_char , FMT = '(I4.4)' ) loop
! CALL open_w_dataset ( id1, 'wrfinput'//loop_char , head_grid , config_flags , output_model_input , "DATASET=INPUT", ierr )
! IF ( ierr .NE. 0 ) THEN
! CALL wrf_error_fatal( 'real: error opening wrfinput'//loop_char//' for writing' )
! ENDIF
head_grid%write_metadata = .true.
CALL calc_current_date
( grid%id , 0. )
head_grid%write_metadata = .true.
! CALL output_model_input ( id1, head_grid , config_flags , ierr )
! CALL close_dataset ( id1 , config_flags , "DATASET=INPUT" )
! Is this or is this not the last time time? We can remove some unnecessary
! stores if it is not.
IF ( loop .LT. time_loop_max ) THEN
! Here we load up the boundary data again for use in the next loop.
CALL stuff_bdy
( grid%eh_ru_1 , grid%eh_ru_b , 'U' , ijds , ijde , spec_bdy_width , &
ids , ide , jds , jde , kds , kde , &
ims , ime , jms , jme , kms , kme , &
ips , ipe , jps , jpe , kps , kpe )
CALL stuff_bdy
( grid%eh_rv_1 , grid%eh_rv_b , 'V' , ijds , ijde , spec_bdy_width , &
ids , ide , jds , jde , kds , kde , &
ims , ime , jms , jme , kms , kme , &
ips , ipe , jps , jpe , kps , kpe )
CALL stuff_bdy
( grid%eh_rtp_1 , grid%eh_rtp_b , 'T' , ijds , ijde , spec_bdy_width , &
ids , ide , jds , jde , kds , kde , &
ims , ime , jms , jme , kms , kme , &
ips , ipe , jps , jpe , kps , kpe )
CALL stuff_bdy
( grid%eh_rrp_1 , grid%eh_rrp_b , 'T' , ijds , ijde , spec_bdy_width , &
ids , ide , jds , jde , kds , kde , &
ims , ime , jms , jme , kms , kme , &
ips , ipe , jps , jpe , kps , kpe )
DO j = jps , MIN(jde-1,jpe)
DO k = kps , kpe
DO i = ips , MIN(ide-1,ipe)
q3dtemp(i,k,j) = grid%moist_1(i,k,j,P_QV)*grid%eh_rr_1(i,k,j)
END DO
END DO
END DO
CALL stuff_bdy
( q3dtemp , grid%eh_rqv_b , 'T' , ijds , ijde , spec_bdy_width , &
ids , ide , jds , jde , kds , kde , &
ims , ime , jms , jme , kms , kme , &
ips , ipe , jps , jpe , kps , kpe )
! We need to save the 3d data to compute a difference during the next loop.
DO j = jps , jpe
DO k = kps , kpe
DO i = ips , ipe
ubdy3dtemp(i,k,j) = grid%eh_ru_1(i,k,j)
vbdy3dtemp(i,k,j) = grid%eh_rv_1(i,k,j)
tbdy3dtemp(i,k,j) = grid%eh_rtp_1(i,k,j)
rbdy3dtemp(i,k,j) = grid%eh_rrp_1(i,k,j)
qbdy3dtemp(i,k,j) = grid%moist_1(i,k,j,P_QV) * grid%eh_rr_1(i,k,j)
END DO
END DO
END DO
ELSE IF ( loop .EQ. time_loop_max ) THEN
! If this is the last time through here, we need to close the files.
CALL close_dataset
( id , config_flags , "DATASET=BOUNDARY" )
END IF
END IF
! Process which time now?
current_date_char = current_date(1:19)
CALL geth_newdate
( next_date_char , current_date_char , interval_seconds )
start_date = next_date_char // '.0000'
END DO
CALL wrf_debug
( 0 , 'wrf: SUCCESS COMPLETE REAL_EH INIT' )
#ifdef DM_PARALLEL
CALL wrf_dm_shutdown
#endif
END PROGRAM real_data