MODULE module_sf_noahlsm 2
USE module_model_constants
INTEGER, PARAMETER :: NSOLD=20
! REAL, PARAMETER :: CP = 1004.5
REAL, PARAMETER :: RD = 287.04, SIGMA = 5.67E-8, &
CPH2O = 4.218E+3,CPICE = 2.106E+3, &
LSUBF = 3.335E+5
! VEGETATION PARAMETERS
INTEGER :: LUCATS , BARE
integer, PARAMETER :: NLUS=50
CHARACTER*4 LUTYPE
INTEGER, DIMENSION(1:NLUS) :: NROTBL
real, dimension(1:NLUS) :: SNUPTBL, RSTBL, RGLTBL, HSTBL, LAITBL, &
ALBTBL, Z0TBL, SHDTBL, MAXALB
REAL :: TOPT_DATA,CMCMAX_DATA,CFACTR_DATA,RSMAX_DATA
! SOIL PARAMETERS
INTEGER :: SLCATS
INTEGER, PARAMETER :: NSLTYPE=30
CHARACTER*4 SLTYPE
REAL, DIMENSION (1:NSLTYPE) :: BB,DRYSMC,F11, &
MAXSMC, REFSMC,SATPSI,SATDK,SATDW, WLTSMC,QTZ
! LSM GENERAL PARAMETERS
INTEGER :: SLPCATS
INTEGER, PARAMETER :: NSLOPE=30
REAL, DIMENSION (1:NSLOPE) :: SLOPE_DATA
REAL :: SBETA_DATA,FXEXP_DATA,CSOIL_DATA,SALP_DATA,REFDK_DATA, &
REFKDT_DATA,FRZK_DATA,ZBOT_DATA, SMLOW_DATA,SMHIGH_DATA, &
CZIL_DATA
!
CONTAINS
!
!----------------------------------------------------------------
SUBROUTINE lsm(DZ8W,QV3D,P8W3D,T3D,TSK, & 1,1
HFX,QFX,LH,GRDFLX, QGH,GSW,GLW,SMSTAV,SMSTOT, &
SFCRUNOFF, UDRUNOFF,IVGTYP,ISLTYP,VEGFRA, &
ALBEDO,ALBBCK,ZNT,Z0,TMN,XLAND,XICE, &
SNOWC,QSFC,RAINBL, &
num_soil_layers,DT,DZS,ITIMESTEP, &
SMOIS,TSLB,SNOW,CANWAT,CHS,CPM,ROVCP, & !H
SH2O,SNOWH, & !H
SNOALB,SHDMIN,SHDMAX, & !I
ACSNOM,ACSNOW, & !O
ids,ide, jds,jde, kds,kde, &
ims,ime, jms,jme, kms,kme, &
its,ite, jts,jte, kts,kte )
!----------------------------------------------------------------
IMPLICIT NONE
!----------------------------------------------------------------
!----------------------------------------------------------------
! --- atmospheric (WRF generic) variables
!-- DT time step (seconds)
!-- DZ8W thickness of layers (m)
!-- T3D temperature (K)
!-- QV3D 3D water vapor mixing ratio (Kg/Kg)
!-- P3D 3D pressure (Pa)
!-- FLHC exchange coefficient for heat (m/s)
!-- FLQC exchange coefficient for moisture (m/s)
!-- PSFC surface pressure (Pa)
!-- XLAND land mask (1 for land, 2 for water)
!-- QGH saturated mixing ratio at 2 meter
!-- GSW NET downward short wave flux at ground surface (W/m^2)
!-- GLW downward long wave flux at ground surface (W/m^2)
!-- History variables
!-- CANWAT canopy moisture content (mm)
!-- TSK surface temperature (K)
!-- TSLB soil temp (k)
!-- SMOIS total soil moisture content (volumetric fraction)
!-- SH2O unfrozen soil moisture content (volumetric fraction)
! note: frozen soil moisture (i.e., soil ice) = SMOIS - SH2O
!-- SNOWH actual snow depth (m)
!-- SNOW liquid water-equivalent snow depth (m)
!-- ALBEDO time-varying surface albedo including snow effect (unitless fraction)
!-- ALBBCK background surface albedo (unitless fraction)
!-- CHS surface exchange coefficient for heat and moisture (m s-1);
! --- soil variables
!-- num_soil_layers the number of soil layers
!-- ZS depths of centers of soil layers (m)
!-- DZS thicknesses of soil layers (m)
!-- SLDPTH thickness of each soil layer (m, same as DZS)
!-- TMN soil temperature at lower boundary (K)
!-- SMCWLT wilting point (volumetric)
!-- SMCDRY dry soil moisture threshold where direct evap from
! top soil layer ends (volumetric)
!-- SMCREF soil moisture threshold below which transpiration begins to
! stress (volumetric)
!-- SMCMAX porosity, i.e. saturated value of soil moisture (volumetric)
!-- NROOT number of root layers, a function of veg type, determined
! in subroutine redprm.
!-- SMSTAV Soil moisture availability for evapotranspiration (
! fraction between SMCWLT and SMCMXA)
!-- SMSTOT Total soil moisture content frozen+unfrozen) in the soil column (mm)
! --- snow variables
!-- SNOWC fraction snow coverage (0-1.0)
! --- vegetation variables
!-- SNOALB upper bound on maximum albedo over deep snow
!-- SHDMIN minimum areal fractional coverage of annual green vegetation
!-- SHDMAX maximum areal fractional coverage of annual green vegetation
!-- XLAI leaf area index (dimensionless)
!-- Z0BRD Background fixed roughness length (M)
!-- Z0 Background vroughness length (M) as function
!-- ZNT Time varying roughness length (M) as function
!-- ALBD(IVGTPK,ISN) background albedo reading from a table
! --- LSM output
!-- HFX upward heat flux at the surface (W/m^2)
!-- QFX upward moisture flux at the surface (kg/m^2/s)
!-- LH upward moisture flux at the surface (W m-2)
!-- GRDFLX(I,J) ground heat flux (W m-2)
!-- FDOWN radiation forcing at the surface (W m-2) = SOLDN*(1-alb)+LWDN
!----------------------------------------------------------------------------
!-- EC canopy water evaporation ((W m-2)
!-- EDIR direct soil evaporation (W m-2)
!-- ET plant transpiration from a particular root layer (W m-2)
!-- ETT total plant transpiration (W m-2)
!-- ESNOW sublimation from (or deposition to if <0) snowpack (W m-2)
!-- DRIP through-fall of precip and/or dew in excess of canopy
! water-holding capacity (m)
!-- DEW dewfall (or frostfall for t<273.15) (M)
! ----------------------------------------------------------------------
!-- BETA ratio of actual/potential evap (dimensionless)
!-- ETP potential evaporation (W m-2)
! ----------------------------------------------------------------------
!-- FLX1 precip-snow sfc (W m-2)
!-- FLX2 freezing rain latent heat flux (W m-2)
!-- FLX3 phase-change heat flux from snowmelt (W m-2)
! ----------------------------------------------------------------------
!-- ACSNOW snow melt (m) (water equivalent)
! ----------------------------------------------------------------------
!-- RUNOFF1 surface runoff (m s-1), not infiltrating the surface
!-- RUNOFF2 subsurface runoff (m s-1), drainage out bottom of last
! soil layer (baseflow)
! important note: here RUNOFF2 is actually the sum of RUNOFF2 and RUNOFF3
!-- RUNOFF3 numerical trunctation in excess of porosity (smcmax)
! for a given soil layer at the end of a time step (m s-1).
! ----------------------------------------------------------------------
!-- RC canopy resistance (s m-1)
!-- PC plant coefficient (unitless fraction, 0-1) where PC*ETP = actual transp
!-- RSMIN minimum canopy resistance (s m-1)
!-- RCS incoming solar rc factor (dimensionless)
!-- RCT air temperature rc factor (dimensionless)
!-- RCQ atmos vapor pressure deficit rc factor (dimensionless)
!-- RCSOIL soil moisture rc factor (dimensionless)
!-- EMISS surface emissivity (between 0 and 1)
!-- ROVCP R/CP
! (R_d/R_v) (dimensionless)
!-- ids start index for i in domain
!-- ide end index for i in domain
!-- jds start index for j in domain
!-- jde end index for j in domain
!-- kds start index for k in domain
!-- kde end index for k in domain
!-- ims start index for i in memory
!-- ime end index for i in memory
!-- jms start index for j in memory
!-- jme end index for j in memory
!-- kms start index for k in memory
!-- kme end index for k in memory
!-- its start index for i in tile
!-- ite end index for i in tile
!-- jts start index for j in tile
!-- jte end index for j in tile
!-- kts start index for k in tile
!-- kte end index for k in tile
!----------------------------------------------------------------
! IN only
INTEGER, INTENT(IN ) :: ids,ide, jds,jde, kds,kde, &
ims,ime, jms,jme, kms,kme, &
its,ite, jts,jte, kts,kte
REAL, DIMENSION( ims:ime, jms:jme ) , &
INTENT(IN ) :: TMN, &
XLAND, &
XICE, &
VEGFRA, &
SHDMIN, &
SHDMAX, &
SNOALB, &
GSW, &
GLW, &
Z0, &
ALBBCK, &
RAINBL
REAL, DIMENSION( ims:ime, kms:kme, jms:jme ) , &
INTENT(IN ) :: QV3D, &
p8w3D, &
DZ8W, &
T3D
REAL, DIMENSION( ims:ime, jms:jme ) , &
INTENT(IN ) :: QGH, &
CHS, &
CPM
INTEGER, DIMENSION( ims:ime, jms:jme ) , &
INTENT(IN ) :: IVGTYP, &
ISLTYP
INTEGER, INTENT(IN) :: num_soil_layers,ITIMESTEP
REAL, INTENT(IN ) :: DT,ROVCP
REAL, DIMENSION(1:num_soil_layers), INTENT(IN)::DZS
! IN and OUT
REAL, DIMENSION( ims:ime , 1:num_soil_layers, jms:jme ), &
INTENT(INOUT) :: SMOIS, & ! total soil moisture
SH2O, & ! new soil liquid
TSLB ! TSLB STEMP
REAL, DIMENSION( ims:ime, jms:jme ) , &
INTENT(INOUT) :: TSK, & !was TGB (temperature)
HFX, &
QFX, &
LH, &
GRDFLX, &
QSFC,&
SNOW, &
SNOWC, &
SNOWH, & !new
CANWAT, &
SMSTAV, &
SMSTOT, &
SFCRUNOFF, &
UDRUNOFF, &
ACSNOM, &
ACSNOW, &
ALBEDO, &
ZNT
! Local variables (moved here from driver to make routine thread safe, 20031007 jm)
REAL, DIMENSION(1:num_soil_layers) :: ET
REAL :: BETA, ETP, SSOIL,EC, EDIR, ESNOW, ETT, &
FLX1,FLX2,FLX3, DRIP,DEW,FDOWN,RC,PC,RSMIN,XLAI, &
RCS,RCT,RCQ,RCSOIL
! DECLARATIONS - LOGICAL
! ----------------------------------------------------------------------
LOGICAL, PARAMETER :: LOCAL=.false.
LOGICAL :: FRZGRA, SNOWNG
LOGICAL :: IPRINT
! ----------------------------------------------------------------------
! DECLARATIONS - INTEGER
! ----------------------------------------------------------------------
INTEGER :: I,J, ICE,NSOIL,SLOPETYP,SOILTYP,VEGTYP
INTEGER :: NROOT
INTEGER :: KZ ,K
INTEGER :: NS
INTEGER, PARAMETER :: NSOLD = 30
! ----------------------------------------------------------------------
! DECLARATIONS - REAL
! ----------------------------------------------------------------------
REAL :: SHMIN,SHMAX,DQSDT2,LWDN,PRCP,PRCPRAIN, &
Q2SAT,SFCPRS,SFCSPD,SFCTMP,SHDFAC,SNOALB1, &
SOLDN,TBOT,ZLVL, Q2K,ALBBRD, ALBEDOK, ETA, ETA_KINEMATIC, &
Z0K,RUNOFF1,RUNOFF2,RUNOFF3,SHEAT
REAL :: SNCOVR,SNEQV,SNOWHK,CMC, CHK,TH2
REAL :: SMCDRY,SMCMAX,SMCREF,SMCWLT,SNOMLT,SOILM,SOILW,Q1,T1
REAL :: DUMMY,Z0BRD
!
REAL :: COSZ, SOLARDIRECT
!
REAL, DIMENSION(1:num_soil_layers):: SLDPTH, STC,SMC,SWC
!
REAL, DIMENSION(1:NSOLD) :: ZSOIL, RTDIS
REAL, PARAMETER :: TRESH=.95E0, A2=17.67,A3=273.15,A4=29.65, &
T0=273.16E0, ELWV=2.50E6, A23M4=A2*(A3-A4)
! debug printout
IPRINT=.false.
!FEI: temporaray arrays below need to be changed later by using SI
SLOPETYP=2
! SHDMIN=0.00
NSOIL=num_soil_layers
DO NS=1,NSOIL
SLDPTH(NS)=DZS(NS)
ENDDO
DO J=jts,jte
IF(ITIMESTEP.EQ.1)THEN
DO 50 I=its,ite
!*** initialize soil conditions for IHOP 31 May case
! IF((XLAND(I,J)-1.5) < 0.)THEN
! if (I==108.and.j==85) then
! DO NS=1,NSOIL
! SMOIS(I,NS,J)=0.10
! SH2O(I,NS,J)=0.10
! enddo
! endif
! ENDIF
!*** SET ZERO-VALUE FOR SOME OUTPUT DIAGNOSTIC ARRAYS
IF((XLAND(I,J)-1.5).GE.0.)THEN
! check sea-ice point
IF(XICE(I,J).EQ.1..and.IPRINT)PRINT*,' sea-ice at water point, I=',I, &
'J=',J
!*** Open Water Case
SMSTAV(I,J)=1.0
SMSTOT(I,J)=1.0
DO NS=1,NSOIL
SMOIS(I,NS,J)=1.0
TSLB(I,NS,J)=273.16 !STEMP
ENDDO
ELSE
IF(XICE(I,J).EQ.1.)THEN
!*** SEA-ICE CASE
SMSTAV(I,J)=1.0
SMSTOT(I,J)=1.0
DO NS=1,NSOIL
SMOIS(I,NS,J)=1.0
ENDDO
ENDIF
ENDIF
!
50 CONTINUE
ENDIF ! end of initialization over ocean
!-----------------------------------------------------------------------
DO 100 I=its,ite
SFCPRS=P8w3D(i,1,j)
Q2K=QV3D(i,1,j)
Q2SAT=QGH(I,j)
SFCTMP=T3D(i,1,j)
ZLVL=0.5*DZ8W(i,1,j)
TH2=SFCTMP+(0.0097545*ZLVL)
LWDN=GLW(I,J)
SOLDN=GSW(I,J)/(1.-ALBEDO(I,J))
PRCP=RAINBL(i,j)/DT
VEGTYP=IVGTYP(I,J)
SOILTYP=ISLTYP(I,J)
SHDFAC=VEGFRA(I,J)/100.
T1=TSK(I,J)
CHK=CHS(I,J)
SHMIN=SHDMIN(I,J)/100. !NEW
SHMAX=SHDMAX(I,J)/100. !NEW
SNOALB1=SNOALB(I,J) !NEW
! convert snow depth from mm to meter
SNEQV=SNOW(I,J)*0.001
SNOWHK=SNOWH(I,J) ! check the unit of snowh which is assumed to be m for now
!***
IF((XLAND(I,J)-1.5).GE.0.)THEN
! Open water points
!CC Q2SAT=PQ0/SFCPRS*EXP(A2*(TGDSA(I)-A3)/(TGDSA(I)-A4))
! HFX(I,J)=CHFF*(TGDSA(I)-TH(I))
! QFX(I,J)=RHO(I)*CHS(I)*(Q2SAT-QV(I))
! SFCEVP(I,J)=SFCEVP(I,J)+QFX(I,J)*DT
ELSE
! Land or sea-ice case
IF (XICE(I,J) .GT. 0.5) THEN
ICE=1
ELSE
ICE=0
ENDIF
DQSDT2=Q2SAT*A23M4/(SFCTMP-A4)**2
IF(ICE.EQ.0)THEN
TBOT=TMN(I,J)
ELSE
TBOT=271.16
ENDIF
IF(VEGTYP.EQ.25) SHDFAC=0.0001
IF(SOILTYP.EQ.14.AND.XICE(I,J).EQ.0.)THEN
IF(IPRINT)PRINT*,' SOIL TYPE FOUND TO BE WATER AT A LAND-POINT'
IF(IPRINT)PRINT*,i,j,'RESET SOIL in surfce.F'
SOILTYP=7
ENDIF
CMC=CANWAT(I,J)
!-------------------------------------------
!*** convert snow depth from mm to meter
!
! IF(RDMAXALB) THEN
! SNOALB=ALBMAX(I,J)*0.01
! ELSE
! SNOALB=MAXALB(IVGTPK)*0.01
! ENDIF
! IF(RDBRDALB) THEN
! ALBBRD=ALBEDO(I,J)*0.01
! ELSE
! ALBBRD=ALBD(IVGTPK,ISN)*0.01
! ENDIF
ALBBRD=ALBBCK(I,J)
Z0BRD=Z0(I,J)
!FEI: temporaray arrays above need to be changed later by using SI
DO 70 NS=1,NSOIL
SMC(NS)=SMOIS(I,NS,J)
STC(NS)=TSLB(I,NS,J) !STEMP
SWC(NS)=SH2O(I,NS,J)
70 CONTINUE
if ( (SNEQV.ne.0..AND.SNOWHK.eq.0.).or.(SNOWHK.le.SNEQV) )THEN
SNOWHK= 5.*SNEQV
endif
IF(IPRINT) THEN
!
print*, 'BEFORE SFLX, in Noahlsm_driver'
print*, 'ICE', ICE, 'DT',DT, 'ZLVL',ZLVL, 'NSOIL', NSOIL, &
'SLDPTH', SLDPTH, 'LOCAL',LOCAL, 'LUTYPE',&
LUTYPE, 'SLTYPE',SLTYPE, 'LWDN',LWDN, 'SOLDN',SOLDN, &
'SFCPRS',SFCPRS, 'PRCP',PRCP,'SFCTMP',SFCTMP,'Q2K',Q2K, &
'TH2',TH2,'Q2SAT',Q2SAT,'DQSDT2',DQSDT2,'VEGTYP', VEGTYP,&
'SOILTYP',SOILTYP, 'SLOPETYP',SLOPETYP, 'SHDFAC',SHDFAC,&
'SHMIN',SHMIN, 'ALBBRD',ALBBRD,'SNOALB1',SNOALB1,'TBOT',&
TBOT, 'Z0BRD',Z0BRD, 'Z0K',Z0K, 'CMC',CMC, 'T1',T1,'STC',&
STC, 'SMC',SMC, 'SWC',SWC,'SNOWHK',SNOWHK,'SNEQV',SNEQV,&
'ALBEDO',ALBEDO,'CHK',CHK,'ETA',ETA,'SHEAT',SHEAT, &
'ETA_KINEMATIC',ETA_KINEMATIC, 'FDOWN',FDOWN,'EC',EC, &
'EDIR',EDIR,'ET',ET,'ETT',ETT,'ESNOW',ESNOW,'DRIP',DRIP,&
'DEW',DEW,'BETA',BETA,'ETP',ETP,'SSOIL',SSOIL,'FLX1',FLX1,&
'FLX2',FLX2,'FLX3',FLX3,'SNOMLT',SNOMLT,'SNCOVR',SNCOVR,&
'RUNOFF1',RUNOFF1,'RUNOFF2',RUNOFF2,'RUNOFF3',RUNOFF3, &
'RC',RC, 'PC',PC,'RSMIN',RSMIN,'XLAI',XLAI,'RCS',RCS, &
'RCT',RCT,'RCQ',RCQ,'RCSOIL',RCSOIL,'SOILW',SOILW, &
'SOILM',SOILM,'Q1',Q1,'SMCWLT',SMCWLT,'SMCDRY',SMCDRY,&
'SMCREF',SMCREF,'SMCMAX',SMCMAX,'NROOT',NROOT
endif
CALL SFLX
(ICE,DT,ZLVL,NSOIL,SLDPTH, & !C
LOCAL, & !L
LUTYPE, SLTYPE, & !CL
LWDN,SOLDN,SFCPRS,PRCP,SFCTMP,Q2K,DUMMY, & !F
DUMMY,DUMMY, DUMMY, & !F PRCPRAIN not used
TH2,Q2SAT,DQSDT2, & !I
VEGTYP,SOILTYP,SLOPETYP,SHDFAC,SHMIN,DUMMY, & !I SHMIN
ALBBRD, SNOALB1,TBOT, Z0BRD, Z0K, & !S SNOALB1
CMC,T1,STC,SMC,SWC,SNOWHK,SNEQV,ALBEDOK,CHK,dummy,& !H
ETA,SHEAT, ETA_KINEMATIC,FDOWN, & !O
EC,EDIR,ET,ETT,ESNOW,DRIP,DEW, & !O
BETA,ETP,SSOIL, & !O
FLX1,FLX2,FLX3, & !O
SNOMLT,SNCOVR, & !O
RUNOFF1,RUNOFF2,RUNOFF3, & !O
RC,PC,RSMIN,XLAI,RCS,RCT,RCQ,RCSOIL, & !O
SOILW,SOILM,Q1, & !D
SMCWLT,SMCDRY,SMCREF,SMCMAX,NROOT)
IF(IPRINT) THEN
print*, 'AFTER SFLX, in Noahlsm_driver'
print*, 'ICE', ICE, 'DT',DT, 'ZLVL',ZLVL, 'NSOIL', NSOIL, &
'SLDPTH', SLDPTH, 'LOCAL',LOCAL, 'LUTYPE',&
LUTYPE, 'SLTYPE',SLTYPE, 'LWDN',LWDN, 'SOLDN',SOLDN, &
'SFCPRS',SFCPRS, 'PRCP',PRCP,'SFCTMP',SFCTMP,'Q2K',Q2K, &
'TH2',TH2,'Q2SAT',Q2SAT,'DQSDT2',DQSDT2,'VEGTYP', VEGTYP,&
'SOILTYP',SOILTYP, 'SLOPETYP',SLOPETYP, 'SHDFAC',SHDFAC,&
'SHDMIN',SHMIN, 'ALBBRD',ALBBRD,'SNOALB',SNOALB1,'TBOT',&
TBOT, 'Z0BRD',Z0BRD, 'Z0K',Z0K, 'CMC',CMC, 'T1',T1,'STC',&
STC, 'SMC',SMC, 'SWc',SWC,'SNOWHK',SNOWHK,'SNEQV',SNEQV,&
'ALBEDO',ALBEDOK,'CHK',CHK,'ETA',ETA,'SHEAT',SHEAT, &
'ETA_KINEMATIC',ETA_KINEMATIC, 'FDOWN',FDOWN,'EC',EC, &
'EDIR',EDIR,'ET',ET,'ETT',ETT,'ESNOW',ESNOW,'DRIP',DRIP,&
'DEW',DEW,'BETA',BETA,'ETP',ETP,'SSOIL',SSOIL,'FLX1',FLX1,&
'FLX2',FLX2,'FLX3',FLX3,'SNOMLT',SNOMLT,'SNCOVR',SNCOVR,&
'RUNOFF1',RUNOFF1,'RUNOFF2',RUNOFF2,'RUNOFF3',RUNOFF3, &
'RC',RC, 'PC',PC,'RSMIN',RSMIN,'XLAI',XLAI,'RCS',RCS, &
'RCT',RCT,'RCQ',RCQ,'RCSOIL',RCSOIL,'SOILW',SOILW, &
'SOILM',SOILM,'Q1',Q1,'SMCWLT',SMCWLT,'SMCDRY',SMCDRY,&
'SMCREF',SMCREF,'SMCMAX',SMCMAX,'NROOT',NROOT
endif
!*** UPDATE STATE VARIABLES
CANWAT(I,J)=CMC
SNOW(I,J)=SNEQV*1000.
SNOWH(I,J)=SNOWHK ! SNOWHK is assumed in meters
ALBEDO(I,J)=ALBEDOK
ZNT(I,J)=Z0K
TSK(I,J)=T1
HFX(I,J)=SHEAT
QFX(I,J)=ETA_KINEMATIC
LH(I,J)=ETA
GRDFLX(I,J)=SSOIL
SNOWC(I,J)=SNCOVR
QSFC(I,J)=Q1
!
DO 80 NS=1,NSOIL
SMOIS(I,NS,J)=SMC(NS)
TSLB(I,NS,J)=STC(NS) ! STEMP
SH2O(I,NS,J)=SWC(NS)
80 CONTINUE
! ENDIF
!*** DIAGNOSTICS
SMSTAV(I,J)=SOILW
SMSTOT(I,J)=SOILM*1000.
! Convert the water unit into mm
SFCRUNOFF(I,J)=SFCRUNOFF(I,J)+RUNOFF1*DT*1000.0
UDRUNOFF(I,J)=UDRUNOFF(I,J)+(RUNOFF2+RUNOFF3)*DT*1000.0
IF(SFCTMP<=T0)THEN
ACSNOW(I,J)=ACSNOW(I,J)+PRCP*DT
ENDIF
IF(SNOW(I,J).GT.0.)THEN
ACSNOM(I,J)=ACSNOM(I,J)+SNOMLT*1000.
ENDIF
ENDIF ! endif of land-sea test
100 CONTINUE ! of I loop
ENDDO ! of J loop
!------------------------------------------------------
END SUBROUTINE lsm
!------------------------------------------------------
SUBROUTINE LSMINIT(VEGFRA,SNOW,SNOWC,SNOWH,CANWAT,SMSTAV, & 1,2
SMSTOT, SFCRUNOFF,UDRUNOFF,ACSNOW, &
ACSNOM,IVGTYP,ISLTYP,TSLB,SMOIS,SH2O,ZS,DZS, &
FNDSOILW, FNDSNOWH, &
num_soil_layers, restart, &
ids,ide, jds,jde, kds,kde, &
ims,ime, jms,jme, kms,kme, &
its,ite, jts,jte, kts,kte )
INTEGER, INTENT(IN ) :: ids,ide, jds,jde, kds,kde, &
ims,ime, jms,jme, kms,kme, &
its,ite, jts,jte, kts,kte
INTEGER, INTENT(IN) :: num_soil_layers
LOGICAL , INTENT(IN) :: restart
REAL, DIMENSION( num_soil_layers), INTENT(INOUT) :: ZS, DZS
REAL, DIMENSION( ims:ime, num_soil_layers, jms:jme ) , &
INTENT(INOUT) :: SMOIS, & !Total soil moisture
SH2O, & !liquid soil moisture
TSLB !STEMP
REAL, DIMENSION( ims:ime, jms:jme ) , &
INTENT(INOUT) :: SNOW, &
SNOWH, &
SNOWC, &
CANWAT, &
SMSTAV, &
SMSTOT, &
SFCRUNOFF, &
UDRUNOFF, &
ACSNOW, &
VEGFRA, &
ACSNOM
INTEGER, DIMENSION( ims:ime, jms:jme ) , &
INTENT(IN) :: IVGTYP, &
ISLTYP
LOGICAL, INTENT(IN) :: FNDSOILW , &
FNDSNOWH
INTEGER :: L
REAL :: BX, SMCMAX, PSISAT, FREE
REAL, PARAMETER :: BLIM = 5.5, HLICE = 3.335E5, &
GRAV = 9.81, T0 = 273.15
!
! initialize three Noah LSM related tables
print*, 'INITIALIZE THREE Noah LSM RELATED TABLES'
CALL LSM_PARM_INIT
IF(.not.restart)THEN
itf=min0(ite,ide-1)
jtf=min0(jte,jde-1)
! initialize soil liquid water content SH2O
!m IF(.NOT.FNDSOILW) THEN
! If no SWC, do the following
! PRINT *,'SOIL WATER NOT FOUND - VALUE SET IN LSMINIT'
DO J = jts,jtf
DO I = its,itf
BX = BB(ISLTYP(I,J))
SMCMAX = MAXSMC(ISLTYP(I,J))
PSISAT = SATPSI(ISLTYP(I,J))
if ((bx > 0.0).and.(smcmax > 0.0).and.(psisat > 0.0)) then
DO NS=1, num_soil_layers
! ----------------------------------------------------------------------
!SH2O <= SMOIS for T < 273.149K (-0.001C)
IF (TSLB(I,NS,J) < 273.149) THEN
! ----------------------------------------------------------------------
! first guess following explicit solution for Flerchinger Eqn from Koren
! et al, JGR, 1999, Eqn 17 (KCOUNT=0 in FUNCTION FRH2O).
! ISLTPK is soil type
BX = BB(ISLTYP(I,J))
SMCMAX = MAXSMC(ISLTYP(I,J))
PSISAT = SATPSI(ISLTYP(I,J))
IF ( BX > BLIM ) BX = BLIM
FK=(( (HLICE/(GRAV*(-PSISAT))) * &
((TSLB(I,NS,J)-T0)/TSLB(I,NS,J)) )**(-1/BX) )*SMCMAX
IF (FK < 0.02) FK = 0.02
SH2O(I,NS,J) = MIN( FK, SMOIS(I,NS,J) )
! ----------------------------------------------------------------------
! now use iterative solution for liquid soil water content using
! FUNCTION FRH2O with the initial guess for SH2O from above explicit
! first guess.
CALL FRH2O
(FREE,TSLB(I,NS,J),SMOIS(I,NS,J),SH2O(I,NS,J), &
SMCMAX,BX,PSISAT)
SH2O(I,NS,J) = FREE
ELSE ! of IF (TSLB(I,NS,J)
! ----------------------------------------------------------------------
! SH2O = SMOIS ( for T => 273.149K (-0.001C)
SH2O(I,NS,J)=SMOIS(I,NS,J)
! ----------------------------------------------------------------------
ENDIF ! of IF (TSLB(I,NS,J)
END DO ! of DO NS=1, num_soil_layers
else ! of if ((bx > 0.0)
DO NS=1, num_soil_layers
SH2O(I,NS,J)=SMOIS(I,NS,J)
END DO
endif ! of if ((bx > 0.0)
ENDDO ! DO I = its,itf
ENDDO ! DO J = jts,jtf
!m ENDIF ! of IF(.NOT.FNDSOILW)THEN
! initialize physical snow height SNOWH
IF(.NOT.FNDSNOWH)THEN
! If no SNOWH do the following
PRINT *,'SNOW HEIGHT NOT FOUND - VALUE DEFINED IN LSMINIT'
DO J = jts,jtf
DO I = its,itf
SNOWH(I,J)=SNOW(I,J)*0.005 ! SNOW in mm and SNOWH in m
ENDDO
ENDDO
ENDIF
! initialize canopy water to ZERO
! print*,'Note that canopy water content (CANWAT) is set to ZERO in LSMINIT'
DO J = jts,jtf
DO I = its,itf
CANWAT(I,J)=0.0
ENDDO
ENDDO
110 CONTINUE
ENDIF
!------------------------------------------------------------------------------
END SUBROUTINE lsminit
!------------------------------------------------------------------------------
!
!-----------------------------------------------------------------
SUBROUTINE LSM_PARM_INIT 1,1
!-----------------------------------------------------------------
character*4 :: MMINLU, MMINSL
MMINLU='USGS'
MMINSL='STAS'
call SOIL_VEG_GEN_PARM
( MMINLU, MMINSL)
!-----------------------------------------------------------------
END SUBROUTINE LSM_PARM_INIT
!-----------------------------------------------------------------
!-----------------------------------------------------------------
SUBROUTINE SOIL_VEG_GEN_PARM( MMINLU, MMINSL) 1
!-----------------------------------------------------------------
IMPLICIT NONE
integer :: LUMATCH, IINDEX, LC, NUM_SLOPE
character*4 :: MMINLU, MMINSL
!-----SPECIFY VEGETATION RELATED CHARACTERISTICS :
! ALBBCK: SFC albedo (in percentage)
! Z0: Roughness length (m)
! SHDFAC: Green vegetation fraction (in percentage)
! Note: The ALBEDO, Z0, and SHDFAC values read from the following table
! ALBEDO, amd Z0 are specified in LAND-USE TABLE; and SHDFAC is
! the monthly green vegetation data
! CMXTBL: MAX CNPY Capacity (m)
! NROTBL: Rooting depth (layer)
! RSMIN: Mimimum stomatal resistance (s m-1)
! RSMAX: Max. stomatal resistance (s m-1)
! RGL: Parameters used in radiation stress function
! HS: Parameter used in vapor pressure deficit functio
! TOPT: Optimum transpiration air temperature. (K)
! CMCMAX: Maximum canopy water capacity
! CFACTR: Parameter used in the canopy inteception calculati
! SNUP: Threshold snow depth (in water equivalent m) that
! implies 100% snow cover
! LAI: Leaf area index (dimensionless)
! MAXALB: Upper bound on maximum albedo over deep snow
!
!-----READ IN VEGETAION PROPERTIES FROM VEGPARM.TBL
!
OPEN(19, FILE='VEGPARM.TBL',FORM='FORMATTED',STATUS='OLD')
PRINT *, 'INPUT LANDUSE = ',MMINLU
LUMATCH=0
READ (19,*)
READ (19,2000,END=2002)LUTYPE
READ (19,*)LUCATS,IINDEX
2000 FORMAT (A4)
IF(LUTYPE.EQ.MMINLU)THEN
PRINT *, 'LANDUSE TYPE = ',LUTYPE,' FOUND', &
LUCATS,' CATEGORIES'
LUMATCH=1
ENDIF
IF(LUTYPE.EQ.MMINLU)THEN
DO LC=1,LUCATS
READ (19,*)IINDEX,ALBTBL(LC),Z0TBL(LC),SHDTBL(LC), &
NROTBL(LC),RSTBL(LC),RGLTBL(LC),HSTBL(LC), &
SNUPTBL(LC),LAITBL(LC),MAXALB(LC)
ENDDO
READ (19,*)
READ (19,*)TOPT_DATA
READ (19,*)
READ (19,*)CMCMAX_DATA
READ (19,*)
READ (19,*)CFACTR_DATA
READ (19,*)
READ (19,*)RSMAX_DATA
READ (19,*)
READ (19,*)BARE
ENDIF
2002 CONTINUE
CLOSE (19)
!
!-----READ IN SOIL PROPERTIES FROM SOILPARM.TBL
!
OPEN(19, FILE='SOILPARM.TBL',FORM='FORMATTED',STATUS='OLD')
MMINSL='STAS' !oct2
PRINT *, 'INPUT SOIL TEXTURE CLASSIFICAION = ',MMINSL
LUMATCH=0
READ (19,*)
READ (19,2000,END=2003)SLTYPE
READ (19,*)SLCATS,IINDEX
IF(SLTYPE.EQ.MMINSL)THEN
PRINT *, 'SOIL TEXTURE CLASSIFICATION = ',SLTYPE,' FOUND', &
SLCATS,' CATEGORIES'
LUMATCH=1
ENDIF
IF(SLTYPE.EQ.MMINSL)THEN
DO LC=1,SLCATS
READ (19,*) IINDEX,BB(LC),DRYSMC(LC),F11(LC),MAXSMC(LC),&
REFSMC(LC),SATPSI(LC),SATDK(LC), SATDW(LC), &
WLTSMC(LC), QTZ(LC)
ENDDO
ENDIF
2003 CONTINUE
CLOSE (19)
IF(LUMATCH.EQ.0)THEN
PRINT *,'SOIl TEXTURE IN INPUT FILE DOES NOT '
PRINT *, 'MATCH SOILPARM TABLE'
STOP 'INCONSISTENT OR MISSING SOILPARM FILE'
ENDIF
!
!-----READ IN GENERAL PARAMETERS FROM GENPARM.TBL
!
OPEN(19, FILE='GENPARM.TBL',FORM='FORMATTED',STATUS='OLD')
READ (19,*)
READ (19,*)
READ (19,*) NUM_SLOPE
SLPCATS=NUM_SLOPE
DO LC=1,SLPCATS
READ (19,*)SLOPE_DATA(LC)
ENDDO
READ (19,*)
READ (19,*)SBETA_DATA
READ (19,*)
READ (19,*)FXEXP_DATA
READ (19,*)
READ (19,*)CSOIL_DATA
READ (19,*)
READ (19,*)SALP_DATA
READ (19,*)
READ (19,*)REFDK_DATA
READ (19,*)
READ (19,*)REFKDT_DATA
READ (19,*)
READ (19,*)FRZK_DATA
READ (19,*)
READ (19,*)ZBOT_DATA
READ (19,*)
READ (19,*)CZIL_DATA
READ (19,*)
READ (19,*)SMLOW_DATA
READ (19,*)
READ (19,*)SMHIGH_DATA
CLOSE (19)
!-----------------------------------------------------------------
END SUBROUTINE SOIL_VEG_GEN_PARM
!-----------------------------------------------------------------
SUBROUTINE SFLX (ICE,DT,ZLVL,NSOIL,SLDPTH, & !C 2,19
LOCAL, & !L
LLANDUSE, LSOIL, & !CL
LWDN,SOLDN,SFCPRS,PRCP,SFCTMP,Q2,SFCSPD, & !F
COSZ,PRCPRAIN, SOLARDIRECT, & !F
TH2,Q2SAT,DQSDT2, & !I
VEGTYP,SOILTYP,SLOPETYP,SHDFAC,SHDMIN,SHDMAX, & !I
ALB, SNOALB,TBOT, Z0BRD, Z0, & !S
CMC,T1,STC,SMC,SH2O,SNOWH,SNEQV,ALBEDO,CH,CM, & !H
! ----------------------------------------------------------------------
! OUTPUTS, DIAGNOSTICS, PARAMETERS BELOW GENERALLY NOT NECESSARY WHEN
! COUPLED WITH E.G. A NWP MODEL (SUCH AS THE NOAA/NWS/NCEP MESOSCALE ETA
! MODEL). OTHER APPLICATIONS MAY REQUIRE DIFFERENT OUTPUT VARIABLES.
! ----------------------------------------------------------------------
ETA,SHEAT, ETA_KINEMATIC,FDOWN, & !O
EC,EDIR,ET,ETT,ESNOW,DRIP,DEW, & !O
BETA,ETP,SSOIL, & !O
FLX1,FLX2,FLX3, & !O
SNOMLT,SNCOVR, & !O
RUNOFF1,RUNOFF2,RUNOFF3, & !O
RC,PC,RSMIN,XLAI,RCS,RCT,RCQ,RCSOIL, & !O
SOILW,SOILM,Q1, & !D
SMCWLT,SMCDRY,SMCREF,SMCMAX,NROOT) !P
! ----------------------------------------------------------------------
! SUBROUTINE SFLX - VERSION 3.X - October 2002
! ----------------------------------------------------------------------
! SUB-DRIVER FOR "Noah LSM" FAMILY OF PHYSICS SUBROUTINES FOR A
! SOIL/VEG/SNOWPACK LAND-SURFACE MODEL TO UPDATE SOIL MOISTURE, SOIL
! ICE, SOIL TEMPERATURE, SKIN TEMPERATURE, SNOWPACK WATER CONTENT,
! SNOWDEPTH, AND ALL TERMS OF THE SURFACE ENERGY BALANCE AND SURFACE
! WATER BALANCE (EXCLUDING INPUT ATMOSPHERIC FORCINGS OF DOWNWARD
! RADIATION AND PRECIP)
! ----------------------------------------------------------------------
! SFLX ARGUMENT LIST KEY:
! ----------------------------------------------------------------------
! C CONFIGURATION INFORMATION
! L LOGICAL
! CL 4-string character bearing logical meaning
! F FORCING DATA
! I OTHER (INPUT) FORCING DATA
! S SURFACE CHARACTERISTICS
! H HISTORY (STATE) VARIABLES
! O OUTPUT VARIABLES
! D DIAGNOSTIC OUTPUT
! P Parameters
! Msic Miscellaneous terms passed from gridded driver
! ----------------------------------------------------------------------
! 1. CONFIGURATION INFORMATION (C):
! ----------------------------------------------------------------------
! ICE SEA-ICE FLAG (=1: SEA-ICE, =0: LAND)
! DT TIMESTEP (SEC) (DT SHOULD NOT EXCEED 3600 SECS, RECOMMEND
! 1800 SECS OR LESS)
! ZLVL HEIGHT (M) ABOVE GROUND OF ATMOSPHERIC FORCING VARIABLES
! NSOIL NUMBER OF SOIL LAYERS (AT LEAST 2, AND NOT GREATER THAN
! PARAMETER NSOLD SET BELOW)
! SLDPTH THE THICKNESS OF EACH SOIL LAYER (M)
! ----------------------------------------------------------------------
! 2. LOGICAL:
! ----------------------------------------------------------------------
! LCH Exchange coefficient (Ch) calculation flag (false: using
! ch-routine SFCDIF; true: Ch is brought in)
! LOCAL Flag for local-site simulation (where there is no
! maps for albedo, veg fraction, and roughness
! true: all LSM parameters (inluding albedo, veg fraction and
! roughness length) will be defined by three tables
! LLANDUSE (=USGS, using USGS landuse classification)
! LSOIL (=STAS, using FAO/STATSGO soil texture classification)
! ----------------------------------------------------------------------
! 3. FORCING DATA (F):
! ----------------------------------------------------------------------
! LWDN LW DOWNWARD RADIATION (W M-2; POSITIVE, NOT NET LONGWAVE)
! SOLDN SOLAR DOWNWARD RADIATION (W M-2; POSITIVE, NOT NET SOLAR)
! SFCPRS PRESSURE AT HEIGHT ZLVL ABOVE GROUND (PASCALS)
! PRCP PRECIP RATE (KG M-2 S-1) (NOTE, THIS IS A RATE)
! SFCTMP AIR TEMPERATURE (K) AT HEIGHT ZLVL ABOVE GROUND
! TH2 AIR POTENTIAL TEMPERATURE (K) AT HEIGHT ZLVL ABOVE GROUND
! Q2 MIXING RATIO AT HEIGHT ZLVL ABOVE GROUND (KG KG-1)
! COSZ Solar zenith angle (not used for now)
! PRCPRAIN Liquid-precipitation rate (KG M-2 S-1) (not used)
! SOLARDIRECT Direct component of downward solar radiation (W M-2) (not used)
! ----------------------------------------------------------------------
! 4. OTHER FORCING (INPUT) DATA (I):
! ----------------------------------------------------------------------
! SFCSPD WIND SPEED (M S-1) AT HEIGHT ZLVL ABOVE GROUND
! Q2SAT SAT MIXING RATIO AT HEIGHT ZLVL ABOVE GROUND (KG KG-1)
! DQSDT2 SLOPE OF SAT SPECIFIC HUMIDITY CURVE AT T=SFCTMP
! (KG KG-1 K-1)
! ----------------------------------------------------------------------
! 5. CANOPY/SOIL CHARACTERISTICS (S):
! ----------------------------------------------------------------------
! VEGTYP VEGETATION TYPE (INTEGER INDEX)
! SOILTYP SOIL TYPE (INTEGER INDEX)
! SLOPETYP CLASS OF SFC SLOPE (INTEGER INDEX)
! SHDFAC AREAL FRACTIONAL COVERAGE OF GREEN VEGETATION
! (FRACTION= 0.0-1.0)
! SHDMIN MINIMUM AREAL FRACTIONAL COVERAGE OF GREEN VEGETATION
! (FRACTION= 0.0-1.0) <= SHDFAC
! PTU PHOTO THERMAL UNIT (PLANT PHENOLOGY FOR ANNUALS/CROPS)
! (NOT YET USED, BUT PASSED TO REDPRM FOR FUTURE USE IN
! VEG PARMS)
! ALB BACKROUND SNOW-FREE SURFACE ALBEDO (FRACTION), FOR JULIAN
! DAY OF YEAR (USUALLY FROM TEMPORAL INTERPOLATION OF
! MONTHLY MEAN VALUES' CALLING PROG MAY OR MAY NOT
! INCLUDE DIURNAL SUN ANGLE EFFECT)
! SNOALB UPPER BOUND ON MAXIMUM ALBEDO OVER DEEP SNOW (E.G. FROM
! ROBINSON AND KUKLA, 1985, J. CLIM. & APPL. METEOR.)
! TBOT BOTTOM SOIL TEMPERATURE (LOCAL YEARLY-MEAN SFC AIR
! TEMPERATURE)
! Z0BRD Background fixed roughness length (M)
! Z0 Time varying roughness length (M) as function of snow depth
! ----------------------------------------------------------------------
! 6. HISTORY (STATE) VARIABLES (H):
! ----------------------------------------------------------------------
! CMC CANOPY MOISTURE CONTENT (M)
! T1 GROUND/CANOPY/SNOWPACK) EFFECTIVE SKIN TEMPERATURE (K)
! STC(NSOIL) SOIL TEMP (K)
! SMC(NSOIL) TOTAL SOIL MOISTURE CONTENT (VOLUMETRIC FRACTION)
! SH2O(NSOIL) UNFROZEN SOIL MOISTURE CONTENT (VOLUMETRIC FRACTION)
! NOTE: FROZEN SOIL MOISTURE = SMC - SH2O
! SNOWH ACTUAL SNOW DEPTH (M)
! SNEQV LIQUID WATER-EQUIVALENT SNOW DEPTH (M)
! NOTE: SNOW DENSITY = SNEQV/SNOWH
! ALBEDO SURFACE ALBEDO INCLUDING SNOW EFFECT (UNITLESS FRACTION)
! =SNOW-FREE ALBEDO (ALB) WHEN SNEQV=0, OR
! =FCT(MSNOALB,ALB,VEGTYP,SHDFAC,SHDMIN) WHEN SNEQV>0
! CH SURFACE EXCHANGE COEFFICIENT FOR HEAT AND MOISTURE
! (M S-1); NOTE: CH IS TECHNICALLY A CONDUCTANCE SINCE
! IT HAS BEEN MULTIPLIED BY WIND SPEED.
! CM SURFACE EXCHANGE COEFFICIENT FOR MOMENTUM (M S-1); NOTE:
! CM IS TECHNICALLY A CONDUCTANCE SINCE IT HAS BEEN
! MULTIPLIED BY WIND SPEED.
! ----------------------------------------------------------------------
! 7. OUTPUT (O):
! ----------------------------------------------------------------------
! OUTPUT VARIABLES NECESSARY FOR A COUPLED NUMERICAL WEATHER PREDICTION
! MODEL, E.G. NOAA/NWS/NCEP MESOSCALE ETA MODEL. FOR THIS APPLICATION,
! THE REMAINING OUTPUT/DIAGNOSTIC/PARAMETER BLOCKS BELOW ARE NOT
! NECESSARY. OTHER APPLICATIONS MAY REQUIRE DIFFERENT OUTPUT VARIABLES.
! ETA ACTUAL LATENT HEAT FLUX (W m-2: NEGATIVE, IF UP FROM
! SURFACE)
! ETA_KINEMATIC atctual latent heat flux in Kg m s-1
! SHEAT SENSIBLE HEAT FLUX (W M-2: NEGATIVE, IF UPWARD FROM
! SURFACE)
! FDOWN Radiation forcing at the surface (W m-2) = SOLDN*(1-alb)+LWDN
! ----------------------------------------------------------------------
! EC CANOPY WATER EVAPORATION (W m-2)
! EDIR DIRECT SOIL EVAPORATION (W m-2)
! ET(NSOIL) PLANT TRANSPIRATION FROM A PARTICULAR ROOT (SOIL) LAYER
! (W m-2)
! ETT TOTAL PLANT TRANSPIRATION (W m-2)
! ESNOW SUBLIMATION FROM (OR DEPOSITION TO IF <0) SNOWPACK
! (W m-2)
! DRIP THROUGH-FALL OF PRECIP AND/OR DEW IN EXCESS OF CANOPY
! WATER-HOLDING CAPACITY (M)
! DEW DEWFALL (OR FROSTFALL FOR T<273.15) (M)
! ----------------------------------------------------------------------
! BETA RATIO OF ACTUAL/POTENTIAL EVAP (DIMENSIONLESS)
! ETP POTENTIAL EVAPORATION (W m-2)
! SSOIL SOIL HEAT FLUX (W M-2: NEGATIVE IF DOWNWARD FROM SURFACE)
! ----------------------------------------------------------------------
! FLX1 PRECIP-SNOW SFC (W M-2)
! FLX2 FREEZING RAIN LATENT HEAT FLUX (W M-2)
! FLX3 PHASE-CHANGE HEAT FLUX FROM SNOWMELT (W M-2)
! ----------------------------------------------------------------------
! SNOMLT SNOW MELT (M) (WATER EQUIVALENT)
! SNCOVR FRACTIONAL SNOW COVER (UNITLESS FRACTION, 0-1)
! ----------------------------------------------------------------------
! RUNOFF1 SURFACE RUNOFF (M S-1), NOT INFILTRATING THE SURFACE
! RUNOFF2 SUBSURFACE RUNOFF (M S-1), DRAINAGE OUT BOTTOM OF LAST
! SOIL LAYER (BASEFLOW)
! RUNOFF3 NUMERICAL TRUNCTATION IN EXCESS OF POROSITY (SMCMAX)
! FOR A GIVEN SOIL LAYER AT THE END OF A TIME STEP (M S-1).
! Note: the above RUNOFF2 is actually the sum of RUNOFF2 and RUNOFF3
! ----------------------------------------------------------------------
! RC CANOPY RESISTANCE (S M-1)
! PC PLANT COEFFICIENT (UNITLESS FRACTION, 0-1) WHERE PC*ETP
! = ACTUAL TRANSP
! XLAI LEAF AREA INDEX (DIMENSIONLESS)
! RSMIN MINIMUM CANOPY RESISTANCE (S M-1)
! RCS INCOMING SOLAR RC FACTOR (DIMENSIONLESS)
! RCT AIR TEMPERATURE RC FACTOR (DIMENSIONLESS)
! RCQ ATMOS VAPOR PRESSURE DEFICIT RC FACTOR (DIMENSIONLESS)
! RCSOIL SOIL MOISTURE RC FACTOR (DIMENSIONLESS)
! ----------------------------------------------------------------------
! 8. DIAGNOSTIC OUTPUT (D):
! ----------------------------------------------------------------------
! SOILW AVAILABLE SOIL MOISTURE IN ROOT ZONE (UNITLESS FRACTION
! BETWEEN SMCWLT AND SMCMAX)
! SOILM TOTAL SOIL COLUMN MOISTURE CONTENT (FROZEN+UNFROZEN) (M)
! Q1 Effective mixing ratio at surface (kg kg-1), used for
! diagnosing the mixing ratio at 2 meter for coupled model
! ----------------------------------------------------------------------
! 9. PARAMETERS (P):
! ----------------------------------------------------------------------
! SMCWLT WILTING POINT (VOLUMETRIC)
! SMCDRY DRY SOIL MOISTURE THRESHOLD WHERE DIRECT EVAP FRM TOP
! LAYER ENDS (VOLUMETRIC)
! SMCREF SOIL MOISTURE THRESHOLD WHERE TRANSPIRATION BEGINS TO
! STRESS (VOLUMETRIC)
! SMCMAX POROSITY, I.E. SATURATED VALUE OF SOIL MOISTURE
! (VOLUMETRIC)
! NROOT NUMBER OF ROOT LAYERS, A FUNCTION OF VEG TYPE, DETERMINED
! IN SUBROUTINE REDPRM.
! ----------------------------------------------------------------------
IMPLICIT NONE
! ----------------------------------------------------------------------
! DECLARATIONS - LOGICAL AND CHARACTERS
! ----------------------------------------------------------------------
LOGICAL, INTENT(IN):: LOCAL
LOGICAL :: FRZGRA, SNOWNG
CHARACTER (LEN=4), INTENT(IN):: LLANDUSE, LSOIL
! ----------------------------------------------------------------------
! DECLARATIONS - INTEGER
! ----------------------------------------------------------------------
INTEGER,INTENT(IN) :: ICE,NSOIL,SLOPETYP,SOILTYP,VEGTYP
INTEGER,INTENT(OUT):: NROOT
INTEGER KZ, K, iout
! ----------------------------------------------------------------------
! DECLARATIONS - REAL
! ----------------------------------------------------------------------
REAL, INTENT(IN) :: SHDMIN,SHDMAX,DT,DQSDT2,LWDN,PRCP,PRCPRAIN, &
Q2,Q2SAT,SFCPRS,SFCSPD,SFCTMP, SNOALB, &
SOLDN,TBOT,TH2,ZLVL
REAL, INTENT(INOUT):: COSZ, SOLARDIRECT,ALBEDO,CH,CM, &
CMC,SNEQV,SNCOVR,SNOWH,T1,XLAI,SHDFAC,Z0BRD,ALB
REAL, DIMENSION(1:NSOIL), INTENT(IN) :: SLDPTH
REAL, DIMENSION(1:NSOIL), INTENT(OUT):: ET
REAL, DIMENSION(1:NSOIL), INTENT(INOUT) :: SH2O, SMC, STC
REAL,DIMENSION(1:NSOLD):: RTDIS, ZSOIL
REAL,INTENT(OUT) :: ETA_KINEMATIC,BETA,DEW,DRIP,EC,EDIR,ESNOW,ETA, &
ETP,FLX1,FLX2,FLX3,SHEAT,PC,RUNOFF1,RUNOFF2, &
RUNOFF3,RC,RSMIN,RCQ,RCS,RCSOIL,RCT,SSOIL, &
SMCDRY,SMCMAX,SMCREF,SMCWLT,SNOMLT, SOILM, &
SOILW,FDOWN,Q1
REAL :: BEXP,CFACTR,CMCMAX,CSOIL,CZIL,DF1,DF1H,DF1A,DKSAT,DWSAT, &
DSOIL,DTOT,ETT,FRCSNO,FRCSOI,EPSCA,F1,FXEXP,FRZX,HS, &
KDT,LVH2O,PRCP1,PSISAT,QUARTZ,R,RCH,REFKDT,RR,RGL, &
RSMAX, &
RSNOW,SNDENS,SNCOND,SBETA,SN_NEW,SLOPE,SNUP,SALP,SOILWM, &
SOILWW,T1V,T24,T2V,TH2V,TOPT,TFREEZ,TSNOW,ZBOT,Z0,PRCPF, &
ETNS,PTU,LSUBS
! ----------------------------------------------------------------------
! DECLARATIONS - PARAMETERS
! ----------------------------------------------------------------------
PARAMETER (TFREEZ = 273.15)
PARAMETER (LVH2O = 2.501E+6)
PARAMETER (LSUBS = 2.83E+6)
PARAMETER (R = 287.04)
! ----------------------------------------------------------------------
! INITIALIZATION
! ----------------------------------------------------------------------
RUNOFF1 = 0.0
RUNOFF2 = 0.0
RUNOFF3 = 0.0
SNOMLT = 0.0
! ----------------------------------------------------------------------
! THE VARIABLE "ICE" IS A FLAG DENOTING SEA-ICE CASE
! ----------------------------------------------------------------------
! SEA-ICE LAYERS ARE EQUAL THICKNESS AND SUM TO 3 METERS
! ----------------------------------------------------------------------
IF (ICE == 1) THEN
DO KZ = 1,NSOIL
ZSOIL (KZ) = -3.* FLOAT (KZ)/ FLOAT (NSOIL)
END DO
! ----------------------------------------------------------------------
! CALCULATE DEPTH (NEGATIVE) BELOW GROUND FROM TOP SKIN SFC TO BOTTOM OF
! EACH SOIL LAYER. NOTE: SIGN OF ZSOIL IS NEGATIVE (DENOTING BELOW
! GROUND)
! ----------------------------------------------------------------------
ELSE
ZSOIL (1) = - SLDPTH (1)
DO KZ = 2,NSOIL
ZSOIL (KZ) = - SLDPTH (KZ) + ZSOIL (KZ -1)
END DO
! ----------------------------------------------------------------------
! NEXT IS CRUCIAL CALL TO SET THE LAND-SURFACE PARAMETERS, INCLUDING
! SOIL-TYPE AND VEG-TYPE DEPENDENT PARAMETERS.
! ----------------------------------------------------------------------
CALL REDPRM
(VEGTYP,SOILTYP,SLOPETYP,CFACTR,CMCMAX,RSMAX,TOPT, &
REFKDT,KDT,SBETA, SHDFAC,RSMIN,RGL,HS,ZBOT,FRZX, &
PSISAT,SLOPE,SNUP,SALP,BEXP,DKSAT,DWSAT, &
SMCMAX,SMCWLT,SMCREF,SMCDRY,F1,QUARTZ,FXEXP, &
RTDIS,SLDPTH,ZSOIL,NROOT,NSOIL,Z0BRD,CZIL,XLAI, &
CSOIL,ALB,PTU,LLANDUSE,LSOIL,LOCAL)
END IF
! ----------------------------------------------------------------------
! INITIALIZE PRECIPITATION LOGICALS.
! ----------------------------------------------------------------------
SNOWNG = .FALSE.
FRZGRA = .FALSE.
! ----------------------------------------------------------------------
! IF SEA-ICE CASE, ASSIGN DEFAULT WATER-EQUIV SNOW ON TOP
! ----------------------------------------------------------------------
IF (ICE == 1) THEN
SNEQV = 0.01
SNOWH = 0.05
! ----------------------------------------------------------------------
! IF INPUT SNOWPACK IS NONZERO, THEN COMPUTE SNOW DENSITY "SNDENS" AND
! SNOW THERMAL CONDUCTIVITY "SNCOND" (NOTE THAT CSNOW IS A FUNCTION
! SUBROUTINE)
! ----------------------------------------------------------------------
END IF
IF (SNEQV == 0.0) THEN
SNDENS = 0.0
SNOWH = 0.0
SNCOND = 1.0
ELSE
SNDENS = SNEQV / SNOWH
IF(SNDENS > 1.0) THEN
write(*,*)'Physical snow depth is less than snow water equiv.'
STOP 333
ENDIF
CALL CSNOW
(SNCOND,SNDENS)
END IF
! ----------------------------------------------------------------------
! DETERMINE IF IT'S PRECIPITATING AND WHAT KIND OF PRECIP IT IS.
! IF IT'S PRCPING AND THE AIR TEMP IS COLDER THAN 0 C, IT'S SNOWING!
! IF IT'S PRCPING AND THE AIR TEMP IS WARMER THAN 0 C, BUT THE GRND
! TEMP IS COLDER THAN 0 C, FREEZING RAIN IS PRESUMED TO BE FALLING.
! ----------------------------------------------------------------------
IF (PRCP > 0.0) THEN
IF (SFCTMP <= TFREEZ) THEN
SNOWNG = .TRUE.
ELSE
IF (T1 <= TFREEZ) FRZGRA = .TRUE.
END IF
END IF
! ----------------------------------------------------------------------
! IF EITHER PRCP FLAG IS SET, DETERMINE NEW SNOWFALL (CONVERTING PRCP
! RATE FROM KG M-2 S-1 TO A LIQUID EQUIV SNOW DEPTH IN METERS) AND ADD
! IT TO THE EXISTING SNOWPACK.
! NOTE THAT SINCE ALL PRECIP IS ADDED TO SNOWPACK, NO PRECIP INFILTRATES
! INTO THE SOIL SO THAT PRCP1 IS SET TO ZERO.
! ----------------------------------------------------------------------
IF ( (SNOWNG) .OR. (FRZGRA) ) THEN
SN_NEW = PRCP * DT * 0.001
! PRCP1 = 0.0
! change name of PRCP1 to PRCPF
SNEQV = SNEQV + SN_NEW
PRCPF = 0.0
! ----------------------------------------------------------------------
! UPDATE SNOW DENSITY BASED ON NEW SNOWFALL, USING OLD AND NEW SNOW.
! UPDATE SNOW THERMAL CONDUCTIVITY
! ----------------------------------------------------------------------
CALL SNOW_NEW
(SFCTMP,SN_NEW,SNOWH,SNDENS)
CALL CSNOW
(SNCOND,SNDENS)
! ----------------------------------------------------------------------
! PRECIP IS LIQUID (RAIN), HENCE SAVE IN THE PRECIP VARIABLE THAT
! LATER CAN WHOLELY OR PARTIALLY INFILTRATE THE SOIL (ALONG WITH
! ANY CANOPY "DRIP" ADDED TO THIS LATER)
! ----------------------------------------------------------------------
! PRCP1 = PRCP
ELSE
! change name of PRCP1 to PRCPF
PRCPF = PRCP
END IF
! ----------------------------------------------------------------------
! DETERMINE SNOWCOVER AND ALBEDO OVER LAND.
! ----------------------------------------------------------------------
! ----------------------------------------------------------------------
! IF SNOW DEPTH=0, SET SNOW FRACTION=0, ALBEDO=SNOW FREE ALBEDO.
! ----------------------------------------------------------------------
IF (ICE == 0) THEN
IF (SNEQV == 0.0) THEN
SNCOVR = 0.0
ALBEDO = ALB
ELSE
! ----------------------------------------------------------------------
! DETERMINE SNOW FRACTIONAL COVERAGE.
! DETERMINE SURFACE ALBEDO MODIFICATION DUE TO SNOWDEPTH STATE.
! ----------------------------------------------------------------------
CALL SNFRAC
(SNEQV,SNUP,SALP,SNOWH,SNCOVR)
CALL ALCALC
(ALB,SNOALB,SHDFAC,SHDMIN,SNCOVR,TSNOW,ALBEDO)
END IF
! ----------------------------------------------------------------------
! SNOW COVER, ALBEDO OVER SEA-ICE
! ----------------------------------------------------------------------
ELSE
SNCOVR = 1.0
ALBEDO = 0.60
END IF
! ----------------------------------------------------------------------
! THERMAL CONDUCTIVITY FOR SEA-ICE CASE
! ----------------------------------------------------------------------
IF (ICE == 1) THEN
DF1 = 2.2
ELSE
! ----------------------------------------------------------------------
! NEXT CALCULATE THE SUBSURFACE HEAT FLUX, WHICH FIRST REQUIRES
! CALCULATION OF THE THERMAL DIFFUSIVITY. TREATMENT OF THE
! LATTER FOLLOWS THAT ON PAGES 148-149 FROM "HEAT TRANSFER IN
! COLD CLIMATES", BY V. J. LUNARDINI (PUBLISHED IN 1981
! BY VAN NOSTRAND REINHOLD CO.) I.E. TREATMENT OF TWO CONTIGUOUS
! "PLANE PARALLEL" MEDIUMS (NAMELY HERE THE FIRST SOIL LAYER
! AND THE SNOWPACK LAYER, IF ANY). THIS DIFFUSIVITY TREATMENT
! BEHAVES WELL FOR BOTH ZERO AND NONZERO SNOWPACK, INCLUDING THE
! LIMIT OF VERY THIN SNOWPACK. THIS TREATMENT ALSO ELIMINATES
! THE NEED TO IMPOSE AN ARBITRARY UPPER BOUND ON SUBSURFACE
! HEAT FLUX WHEN THE SNOWPACK BECOMES EXTREMELY THIN.
! ----------------------------------------------------------------------
! FIRST CALCULATE THERMAL DIFFUSIVITY OF TOP SOIL LAYER, USING
! BOTH THE FROZEN AND LIQUID SOIL MOISTURE, FOLLOWING THE
! SOIL THERMAL DIFFUSIVITY FUNCTION OF PETERS-LIDARD ET AL.
! (1998,JAS, VOL 55, 1209-1224), WHICH REQUIRES THE SPECIFYING
! THE QUARTZ CONTENT OF THE GIVEN SOIL CLASS (SEE ROUTINE REDPRM)
! ----------------------------------------------------------------------
! ----------------------------------------------------------------------
! NEXT ADD SUBSURFACE HEAT FLUX REDUCTION EFFECT FROM THE
! OVERLYING GREEN CANOPY, ADAPTED FROM SECTION 2.1.2 OF
! PETERS-LIDARD ET AL. (1997, JGR, VOL 102(D4))
! ----------------------------------------------------------------------
CALL TDFCND
(DF1,SMC (1),QUARTZ,SMCMAX,SH2O (1))
DF1 = DF1 * EXP (SBETA * SHDFAC)
! ----------------------------------------------------------------------
! FINALLY "PLANE PARALLEL" SNOWPACK EFFECT FOLLOWING
! V.J. LINARDINI REFERENCE CITED ABOVE. NOTE THAT DTOT IS
! COMBINED DEPTH OF SNOWDEPTH AND THICKNESS OF FIRST SOIL LAYER
! ----------------------------------------------------------------------
END IF
DSOIL = - (0.5 * ZSOIL (1))
IF (SNEQV == 0.) THEN
SSOIL = DF1 * (T1- STC (1) ) / DSOIL
ELSE
DTOT = SNOWH + DSOIL
FRCSNO = SNOWH / DTOT
! 1. HARMONIC MEAN (SERIES FLOW)
! DF1 = (SNCOND*DF1)/(FRCSOI*SNCOND+FRCSNO*DF1)
FRCSOI = DSOIL / DTOT
! 2. ARITHMETIC MEAN (PARALLEL FLOW)
! DF1 = FRCSNO*SNCOND + FRCSOI*DF1
DF1H = (SNCOND * DF1)/ (FRCSOI * SNCOND+ FRCSNO * DF1)
! 3. GEOMETRIC MEAN (INTERMEDIATE BETWEEN HARMONIC AND ARITHMETIC MEAN)
! DF1 = (SNCOND**FRCSNO)*(DF1**FRCSOI)
! TEST - MBEK, 10 Jan 2002
! weigh DF by snow fraction
! DF1 = DF1H*SNCOVR + DF1A*(1.0-SNCOVR)
! DF1 = DF1H*SNCOVR + DF1*(1.0-SNCOVR)
DF1A = FRCSNO * SNCOND+ FRCSOI * DF1
! ----------------------------------------------------------------------
! CALCULATE SUBSURFACE HEAT FLUX, SSOIL, FROM FINAL THERMAL DIFFUSIVITY
! OF SURFACE MEDIUMS, DF1 ABOVE, AND SKIN TEMPERATURE AND TOP
! MID-LAYER SOIL TEMPERATURE
! ----------------------------------------------------------------------
DF1 = DF1A * SNCOVR + DF1* (1.0- SNCOVR)
SSOIL = DF1 * (T1- STC (1) ) / DTOT
END IF
! ----------------------------------------------------------------------
! DETERMINE SURFACE ROUGHNESS OVER SNOWPACK USING SNOW CONDITION FROM
! THE PREVIOUS TIMESTEP.
! ----------------------------------------------------------------------
IF (SNCOVR > 0. ) THEN
CALL SNOWZ0
(SNCOVR,Z0,Z0BRD)
ELSE
Z0=Z0BRD
END IF
! ----------------------------------------------------------------------
! NEXT CALL ROUTINE SFCDIF TO CALCULATE THE SFC EXCHANGE COEF (CH) FOR
! HEAT AND MOISTURE.
! NOTE !!!
! DO NOT CALL SFCDIF UNTIL AFTER ABOVE CALL TO REDPRM, IN CASE
! ALTERNATIVE VALUES OF ROUGHNESS LENGTH (Z0) AND ZILINTINKEVICH COEF
! (CZIL) ARE SET THERE VIA NAMELIST I/O.
! NOTE !!!
! ROUTINE SFCDIF RETURNS A CH THAT REPRESENTS THE WIND SPD TIMES THE
! "ORIGINAL" NONDIMENSIONAL "Ch" TYPICAL IN LITERATURE. HENCE THE CH
! RETURNED FROM SFCDIF HAS UNITS OF M/S. THE IMPORTANT COMPANION
! COEFFICIENT OF CH, CARRIED HERE AS "RCH", IS THE CH FROM SFCDIF TIMES
! AIR DENSITY AND PARAMETER "CP". "RCH" IS COMPUTED IN "CALL PENMAN".
! RCH RATHER THAN CH IS THE COEFF USUALLY INVOKED LATER IN EQNS.
! NOTE !!!
! ----------------------------------------------------------------------
! SFCDIF ALSO RETURNS THE SURFACE EXCHANGE COEFFICIENT FOR MOMENTUM, CM,
! ALSO KNOWN AS THE SURFACE DRAGE COEFFICIENT. Needed as a state variable
! for iterative/implicit solution of CH in SFCDIF
! ----------------------------------------------------------------------
! IF(.NOT.LCH) THEN
! T1V = T1 * (1.0+ 0.61 * Q2)
! TH2V = TH2 * (1.0+ 0.61 * Q2)
! CALL SFCDIF_off (ZLVL,Z0,T1V,TH2V,SFCSPD,CZIL,CM,CH)
! ENDIF
! ----------------------------------------------------------------------
! CALL PENMAN SUBROUTINE TO CALCULATE POTENTIAL EVAPORATION (ETP), AND
! OTHER PARTIAL PRODUCTS AND SUMS SAVE IN COMMON/RITE FOR LATER
! CALCULATIONS.
! ----------------------------------------------------------------------
! ----------------------------------------------------------------------
! CALCULATE TOTAL DOWNWARD RADIATION (SOLAR PLUS LONGWAVE) NEEDED IN
! PENMAN EP SUBROUTINE THAT FOLLOWS
! ----------------------------------------------------------------------
FDOWN = SOLDN * (1.0- ALBEDO) + LWDN
! ----------------------------------------------------------------------
! CALC VIRTUAL TEMPS AND VIRTUAL POTENTIAL TEMPS NEEDED BY SUBROUTINES
! PENMAN.
T2V = SFCTMP * (1.0+ 0.61 * Q2 )
iout=0
if(iout.eq.1) then
print*,'before penman'
print*,' SFCTMP',SFCTMP,'SFCPRS',SFCPRS,'CH',CH,'T2V',T2V, &
'TH2',TH2,'PRCP',PRCP,'FDOWN',FDOWN,'T24',T24,'SSOIL',SSOIL, &
'Q2',Q2,'Q2SAT',Q2SAT,'ETP',ETP,'RCH',RCH, &
'EPSCA',EPSCA,'RR',RR ,'SNOWNG',SNOWNG,'FRZGRA',FRZGRA, &
'DQSDT2',DQSDT2,'FLX2',FLX2,'SNOWH',SNOWH,'SNEQV',SNEQV, &
' DSOIL',DSOIL,' FRCSNO',FRCSNO,' SNCOVR',SNCOVR,' DTOT',DTOT, &
' ZSOIL (1)',ZSOIL(1),' DF1',DF1,'T1',T1,' STC1',STC(1), &
'ALBEDO',ALBEDO,'SMC',SMC,'STC',STC,'SH2O',SH2O
endif
CALL PENMAN
(SFCTMP,SFCPRS,CH,T2V,TH2,PRCP,FDOWN,T24,SSOIL, &
Q2,Q2SAT,ETP,RCH,EPSCA,RR,SNOWNG,FRZGRA, &
DQSDT2,FLX2)
! ----------------------------------------------------------------------
! CALL CANRES TO CALCULATE THE CANOPY RESISTANCE AND CONVERT IT INTO PC
! IF NONZERO GREENNESS FRACTION
! ----------------------------------------------------------------------
! print*,'after penman ETP',ETP
! ----------------------------------------------------------------------
! FROZEN GROUND EXTENSION: TOTAL SOIL WATER "SMC" WAS REPLACED
! BY UNFROZEN SOIL WATER "SH2O" IN CALL TO CANRES BELOW
! ----------------------------------------------------------------------
IF (SHDFAC > 0.) THEN
CALL CANRES
(SOLDN,CH,SFCTMP,Q2,SFCPRS,SH2O,ZSOIL,NSOIL, &
SMCWLT,SMCREF,RSMIN,RC,PC,NROOT,Q2SAT,DQSDT2, &
TOPT,RSMAX,RGL,HS,XLAI, &
RCS,RCT,RCQ,RCSOIL)
END IF
! ----------------------------------------------------------------------
! NOW DECIDE MAJOR PATHWAY BRANCH TO TAKE DEPENDING ON WHETHER SNOWPACK
! EXISTS OR NOT:
! ----------------------------------------------------------------------
ESNOW = 0.0
IF (SNEQV == 0.0) THEN
CALL NOPAC
(ETP,ETA,PRCP,SMC,SMCMAX,SMCWLT, &
SMCREF,SMCDRY,CMC,CMCMAX,NSOIL,DT, &
SHDFAC, &
SBETA,Q2,T1,SFCTMP,T24,TH2,FDOWN,F1,SSOIL, &
STC,EPSCA,BEXP,PC,RCH,RR,CFACTR, &
SH2O,SLOPE,KDT,FRZX,PSISAT,ZSOIL, &
DKSAT,DWSAT,TBOT,ZBOT,RUNOFF1,RUNOFF2, &
RUNOFF3,EDIR,EC,ET,ETT,NROOT,ICE,RTDIS, &
QUARTZ,FXEXP,CSOIL, &
BETA,DRIP,DEW,FLX1,FLX3)
ETA_KINEMATIC = ETA
ETA = ETA * LVH2O
ETP = ETP*LVH2O
! BETA = ETA/ETP
ELSE
CALL SNOPAC
(ETP,ETA,PRCP,PRCPF,SNOWNG,SMC,SMCMAX,SMCWLT, &
SMCREF,SMCDRY,CMC,CMCMAX,NSOIL,DT, &
SBETA,DF1, &
Q2,T1,SFCTMP,T24,TH2,FDOWN,F1,SSOIL,STC,EPSCA, &
SFCPRS,BEXP,PC,RCH,RR,CFACTR,SNCOVR,SNEQV,SNDENS,&
SNOWH,SH2O,SLOPE,KDT,FRZX,PSISAT, &
ZSOIL,DWSAT,DKSAT,TBOT,ZBOT,SHDFAC,RUNOFF1, &
RUNOFF2,RUNOFF3,EDIR,EC,ET,ETT,NROOT,SNOMLT, &
ICE,RTDIS,QUARTZ,FXEXP,CSOIL, &
BETA,DRIP,DEW,FLX1,FLX2,FLX3,ESNOW,ETNS)
ETA_KINEMATIC = ESNOW + ETNS
ESNOW = ESNOW * LSUBS
! ETA = ESNOW * LSUBS + ETNS * LVH2O
ETA = ESNOW + ETNS * LVH2O
ETP = ETP*LSUBS
! ETP = ETP* ( (SNCOVR*LSUBS+(1.-SNCOVR)*LVH2O )
! BETA = ETA/ETP
END IF
! Calculate effective mixing ratio at grnd level (skin)
!
! Q1=Q2+ETA*CP/RCH
Q1=Q2+ETA_KINEMATIC*CP/RCH
!
! ----------------------------------------------------------------------
! PREPARE SENSIBLE HEAT (H) FOR RETURN TO PARENT MODEL
! ----------------------------------------------------------------------
! ----------------------------------------------------------------------
! CONVERT UNITS AND/OR SIGN OF TOTAL EVAP (ETA), POTENTIAL EVAP (ETP),
! SUBSURFACE HEAT FLUX (S), AND RUNOFFS FOR WHAT PARENT MODEL EXPECTS
! CONVERT ETA FROM KG M-2 S-1 TO W M-2
! ----------------------------------------------------------------------
!ek ETA = ETA*LVH2O
SHEAT = - (CH * CP * SFCPRS)/ (R * T2V) * ( TH2- T1 )
! ----------------------------------------------------------------------
! CONVERT OTHER EVAP TERMS FROM M S-1 TO KG M-2 S-1, THEN TO W M-2
! ----------------------------------------------------------------------
! EDIR = EDIR*1000.
! EC = EC*1000.
! DO K = 1,NSOIL
! ET(K) = ET(K)*1000.
! END DO
! ETT = ETT*1000.
! ETP = ETP * LVH2O
EC = EC * LVH2O
EDIR = EDIR * LVH2O
DO K = 1,NSOIL
ET (K) = ET (K)* LVH2O
END DO
ETT = ETT * LVH2O
! ----------------------------------------------------------------------
! CONVERT THE SIGN OF SOIL HEAT FLUX SO THAT:
! SSOIL>0: WARM THE SURFACE (NIGHT TIME)
! SSOIL<0: COOL THE SURFACE (DAY TIME)
! ----------------------------------------------------------------------
! ESNOW = ESNOW * LVH2O
! ----------------------------------------------------------------------
! CONVERT RUNOFF3 (INTERNAL LAYER RUNOFF FROM SUPERSAT) FROM M TO M S-1
! AND ADD TO SUBSURFACE RUNOFF/DRAINAGE/BASEFLOW
! ----------------------------------------------------------------------
SSOIL = -1.0* SSOIL
RUNOFF3 = RUNOFF3/ DT
! ----------------------------------------------------------------------
! TOTAL COLUMN SOIL MOISTURE IN METERS (SOILM) AND ROOT-ZONE
! SOIL MOISTURE AVAILABILITY (FRACTION) RELATIVE TO POROSITY/SATURATION
! ----------------------------------------------------------------------
RUNOFF2 = RUNOFF2+ RUNOFF3
IF (ICE == 0) THEN
SOILM = -1.0* SMC (1)* ZSOIL (1)
DO K = 2,NSOIL
SOILM = SOILM + SMC (K)* (ZSOIL (K -1) - ZSOIL (K))
END DO
SOILWM = -1.0* (SMCMAX - SMCWLT)* ZSOIL (1)
SOILWW = -1.0* (SMC (1) - SMCWLT)* ZSOIL (1)
IF (NROOT >= 2) THEN
DO K = 2,NROOT
SOILWM = SOILWM + (SMCMAX - SMCWLT)* (ZSOIL (K -1) - ZSOIL (K))
SOILWW = SOILWW + (SMC(K) - SMCWLT)* (ZSOIL (K -1) - ZSOIL (K))
END DO
END IF
IF (SOILWM .LT. 1.E-6) THEN
SOILWM = 0.0
SOILW = 0.0
SOILM = 0.0
ELSE
SOILW = SOILWW / SOILWM
END IF
ELSE
SOILWM = 0.0
SOILW = 0.0
SOILM = 0.0
END IF
! ----------------------------------------------------------------------
END SUBROUTINE SFLX
! ----------------------------------------------------------------------
SUBROUTINE ALCALC (ALB,SNOALB,SHDFAC,SHDMIN,SNCOVR,TSNOW,ALBEDO) 1
! ----------------------------------------------------------------------
! CALCULATE ALBEDO INCLUDING SNOW EFFECT (0 -> 1)
! ALB SNOWFREE ALBEDO
! SNOALB MAXIMUM (DEEP) SNOW ALBEDO
! SHDFAC AREAL FRACTIONAL COVERAGE OF GREEN VEGETATION
! SHDMIN MINIMUM AREAL FRACTIONAL COVERAGE OF GREEN VEGETATION
! SNCOVR FRACTIONAL SNOW COVER
! ALBEDO SURFACE ALBEDO INCLUDING SNOW EFFECT
! TSNOW SNOW SURFACE TEMPERATURE (K)
! ----------------------------------------------------------------------
IMPLICIT NONE
! ----------------------------------------------------------------------
! SNOALB IS ARGUMENT REPRESENTING MAXIMUM ALBEDO OVER DEEP SNOW,
! AS PASSED INTO SFLX, AND ADAPTED FROM THE SATELLITE-BASED MAXIMUM
! SNOW ALBEDO FIELDS PROVIDED BY D. ROBINSON AND G. KUKLA
! (1985, JCAM, VOL 24, 402-411)
! ----------------------------------------------------------------------
REAL, INTENT(IN) :: ALB, SNOALB, SHDFAC, SHDMIN, SNCOVR, TSNOW
REAL, INTENT(OUT) :: ALBEDO
ALBEDO = ALB + (1.0- (SHDFAC - SHDMIN))* SNCOVR * (SNOALB - ALB)
! BASE FORMULATION (DICKINSON ET AL., 1986, COGLEY ET AL., 1990)
! IF (TSNOW.LE.263.16) THEN
! ALBEDO=SNOALB
! ELSE
! IF (TSNOW.LT.273.16) THEN
! TM=0.1*(TSNOW-263.16)
! ALBEDO=0.5*((0.9-0.2*(TM**3))+(0.8-0.16*(TM**3)))
! ELSE
! ALBEDO=0.67
! ENDIF
! ENDIF
! ISBA FORMULATION (VERSEGHY, 1991; BAKER ET AL., 1990)
! IF (TSNOW.LT.273.16) THEN
! ALBEDO=SNOALB-0.008*DT/86400
! ELSE
! ALBEDO=(SNOALB-0.5)*EXP(-0.24*DT/86400)+0.5
! ENDIF
IF (ALBEDO > SNOALB) ALBEDO = SNOALB
! ----------------------------------------------------------------------
END SUBROUTINE ALCALC
! ----------------------------------------------------------------------
SUBROUTINE CANRES (SOLAR,CH,SFCTMP,Q2,SFCPRS,SMC,ZSOIL,NSOIL, & 2
SMCWLT,SMCREF,RSMIN,RC,PC,NROOT,Q2SAT,DQSDT2, &
TOPT,RSMAX,RGL,HS,XLAI, &
RCS,RCT,RCQ,RCSOIL)
! ----------------------------------------------------------------------
! SUBROUTINE CANRES
! ----------------------------------------------------------------------
! CALCULATE CANOPY RESISTANCE WHICH DEPENDS ON INCOMING SOLAR RADIATION,
! AIR TEMPERATURE, ATMOSPHERIC WATER VAPOR PRESSURE DEFICIT AT THE
! LOWEST MODEL LEVEL, AND SOIL MOISTURE (PREFERABLY UNFROZEN SOIL
! MOISTURE RATHER THAN TOTAL)
! ----------------------------------------------------------------------
! SOURCE: JARVIS (1976), NOILHAN AND PLANTON (1989, MWR), JACQUEMIN AND
! NOILHAN (1990, BLM)
! SEE ALSO: CHEN ET AL (1996, JGR, VOL 101(D3), 7251-7268), EQNS 12-14
! AND TABLE 2 OF SEC. 3.1.2
! ----------------------------------------------------------------------
! INPUT:
! SOLAR INCOMING SOLAR RADIATION
! CH SURFACE EXCHANGE COEFFICIENT FOR HEAT AND MOISTURE
! SFCTMP AIR TEMPERATURE AT 1ST LEVEL ABOVE GROUND
! Q2 AIR HUMIDITY AT 1ST LEVEL ABOVE GROUND
! Q2SAT SATURATION AIR HUMIDITY AT 1ST LEVEL ABOVE GROUND
! DQSDT2 SLOPE OF SATURATION HUMIDITY FUNCTION WRT TEMP
! SFCPRS SURFACE PRESSURE
! SMC VOLUMETRIC SOIL MOISTURE
! ZSOIL SOIL DEPTH (NEGATIVE SIGN, AS IT IS BELOW GROUND)
! NSOIL NO. OF SOIL LAYERS
! NROOT NO. OF SOIL LAYERS IN ROOT ZONE (1.LE.NROOT.LE.NSOIL)
! XLAI LEAF AREA INDEX
! SMCWLT WILTING POINT
! SMCREF REFERENCE SOIL MOISTURE (WHERE SOIL WATER DEFICIT STRESS
! SETS IN)
! RSMIN, RSMAX, TOPT, RGL, HS ARE CANOPY STRESS PARAMETERS SET IN
! SURBOUTINE REDPRM
! OUTPUT:
! PC PLANT COEFFICIENT
! RC CANOPY RESISTANCE
! ----------------------------------------------------------------------
IMPLICIT NONE
INTEGER, INTENT(IN) :: NROOT,NSOIL
INTEGER K
REAL, INTENT(IN) :: CH,DQSDT2,HS,Q2,Q2SAT,RSMIN,RGL,RSMAX, &
SFCPRS,SFCTMP,SMCREF,SMCWLT, SOLAR,TOPT,XLAI
REAL,DIMENSION(1:NSOIL), INTENT(IN) :: SMC,ZSOIL
REAL, INTENT(OUT):: PC,RC,RCQ,RCS,RCSOIL,RCT
REAL :: DELTA,FF,GX,P,RR
REAL, DIMENSION(1:NSOLD) :: PART
REAL, PARAMETER :: SLV = 2.501000E6
! ----------------------------------------------------------------------
! INITIALIZE CANOPY RESISTANCE MULTIPLIER TERMS.
! ----------------------------------------------------------------------
RCS = 0.0
RCT = 0.0
RCQ = 0.0
RCSOIL = 0.0
! ----------------------------------------------------------------------
! CONTRIBUTION DUE TO INCOMING SOLAR RADIATION
! ----------------------------------------------------------------------
RC = 0.0
FF = 0.55*2.0* SOLAR / (RGL * XLAI)
RCS = (FF + RSMIN / RSMAX) / (1.0+ FF)
! ----------------------------------------------------------------------
! CONTRIBUTION DUE TO AIR TEMPERATURE AT FIRST MODEL LEVEL ABOVE GROUND
! RCT EXPRESSION FROM NOILHAN AND PLANTON (1989, MWR).
! ----------------------------------------------------------------------
RCS = MAX (RCS,0.0001)
RCT = 1.0- 0.0016* ( (TOPT - SFCTMP)**2.0)
! ----------------------------------------------------------------------
! CONTRIBUTION DUE TO VAPOR PRESSURE DEFICIT AT FIRST MODEL LEVEL.
! RCQ EXPRESSION FROM SSIB
! ----------------------------------------------------------------------
RCT = MAX (RCT,0.0001)
RCQ = 1.0/ (1.0+ HS * (Q2SAT - Q2))
! ----------------------------------------------------------------------
! CONTRIBUTION DUE TO SOIL MOISTURE AVAILABILITY.
! DETERMINE CONTRIBUTION FROM EACH SOIL LAYER, THEN ADD THEM UP.
! ----------------------------------------------------------------------
RCQ = MAX (RCQ,0.01)
GX = (SMC (1) - SMCWLT) / (SMCREF - SMCWLT)
IF (GX > 1.) GX = 1.
IF (GX < 0.) GX = 0.
! ----------------------------------------------------------------------
! USE SOIL DEPTH AS WEIGHTING FACTOR
! ----------------------------------------------------------------------
! ----------------------------------------------------------------------
! USE ROOT DISTRIBUTION AS WEIGHTING FACTOR
! PART(1) = RTDIS(1) * GX
! ----------------------------------------------------------------------
PART (1) = (ZSOIL (1)/ ZSOIL (NROOT)) * GX
DO K = 2,NROOT
GX = (SMC (K) - SMCWLT) / (SMCREF - SMCWLT)
IF (GX > 1.) GX = 1.
IF (GX < 0.) GX = 0.
! ----------------------------------------------------------------------
! USE SOIL DEPTH AS WEIGHTING FACTOR
! ----------------------------------------------------------------------
! ----------------------------------------------------------------------
! USE ROOT DISTRIBUTION AS WEIGHTING FACTOR
! PART(K) = RTDIS(K) * GX
! ----------------------------------------------------------------------
PART (K) = ( (ZSOIL (K) - ZSOIL (K -1))/ ZSOIL (NROOT)) * GX
END DO
DO K = 1,NROOT
RCSOIL = RCSOIL + PART (K)
END DO
! ----------------------------------------------------------------------
! DETERMINE CANOPY RESISTANCE DUE TO ALL FACTORS. CONVERT CANOPY
! RESISTANCE (RC) TO PLANT COEFFICIENT (PC) TO BE USED WITH POTENTIAL
! EVAP IN DETERMINING ACTUAL EVAP. PC IS DETERMINED BY:
! PC * LINERIZED PENMAN POTENTIAL EVAP =
! PENMAN-MONTEITH ACTUAL EVAPORATION (CONTAINING RC TERM).
! ----------------------------------------------------------------------
RCSOIL = MAX (RCSOIL,0.0001)
RC = RSMIN / (XLAI * RCS * RCT * RCQ * RCSOIL)
RR = (4.* SIGMA * RD / CP)* (SFCTMP **4.)/ (SFCPRS * CH) + 1.0
DELTA = (SLV / CP)* DQSDT2
PC = (RR + DELTA)/ (RR * (1. + RC * CH) + DELTA)
! ----------------------------------------------------------------------
END SUBROUTINE CANRES
! ----------------------------------------------------------------------
SUBROUTINE CSNOW (SNCOND,DSNOW) 2
! ----------------------------------------------------------------------
! SUBROUTINE CSNOW
! FUNCTION CSNOW
! ----------------------------------------------------------------------
! CALCULATE SNOW TERMAL CONDUCTIVITY
! ----------------------------------------------------------------------
IMPLICIT NONE
REAL, INTENT(IN) :: DSNOW
REAL, INTENT(OUT):: SNCOND
REAL :: C
REAL, PARAMETER :: UNIT = 0.11631
! ----------------------------------------------------------------------
! SNCOND IN UNITS OF CAL/(CM*HR*C), RETURNED IN W/(M*C)
! CSNOW IN UNITS OF CAL/(CM*HR*C), RETURNED IN W/(M*C)
! BASIC VERSION IS DYACHKOVA EQUATION (1960), FOR RANGE 0.1-0.4
! ----------------------------------------------------------------------
C = 0.328*10** (2.25* DSNOW)
! CSNOW=UNIT*C
! ----------------------------------------------------------------------
! DE VAUX EQUATION (1933), IN RANGE 0.1-0.6
! ----------------------------------------------------------------------
! SNCOND=0.0293*(1.+100.*DSNOW**2)
! CSNOW=0.0293*(1.+100.*DSNOW**2)
! ----------------------------------------------------------------------
! E. ANDERSEN FROM FLERCHINGER
! ----------------------------------------------------------------------
! SNCOND=0.021+2.51*DSNOW**2
! CSNOW=0.021+2.51*DSNOW**2
SNCOND = UNIT * C
! ----------------------------------------------------------------------
END SUBROUTINE CSNOW
! ----------------------------------------------------------------------
SUBROUTINE DEVAP (EDIR,ETP1,SMC,ZSOIL,SHDFAC,SMCMAX,BEXP, & 1
DKSAT,DWSAT,SMCDRY,SMCREF,SMCWLT,FXEXP)
! ----------------------------------------------------------------------
! SUBROUTINE DEVAP
! FUNCTION DEVAP
! ----------------------------------------------------------------------
! CALCULATE DIRECT SOIL EVAPORATION
! ----------------------------------------------------------------------
IMPLICIT NONE
REAL, INTENT(IN) :: ETP1,SMC,BEXP,DKSAT,DWSAT,FXEXP, &
SHDFAC,SMCDRY,SMCMAX,ZSOIL,SMCREF,SMCWLT
REAL, INTENT(OUT):: EDIR
REAL :: FX, SRATIO
! ----------------------------------------------------------------------
! DIRECT EVAP A FUNCTION OF RELATIVE SOIL MOISTURE AVAILABILITY, LINEAR
! WHEN FXEXP=1.
! ----------------------------------------------------------------------
! ----------------------------------------------------------------------
! FX > 1 REPRESENTS DEMAND CONTROL
! FX < 1 REPRESENTS FLUX CONTROL
! ----------------------------------------------------------------------
SRATIO = (SMC - SMCDRY) / (SMCMAX - SMCDRY)
IF (SRATIO > 0.) THEN
FX = SRATIO**FXEXP
FX = MAX ( MIN ( FX, 1. ) ,0. )
ELSE
FX = 0.
ENDIF
! ----------------------------------------------------------------------
! ALLOW FOR THE DIRECT-EVAP-REDUCING EFFECT OF SHADE
! ----------------------------------------------------------------------
EDIR = FX * ( 1.0- SHDFAC ) * ETP1
! ----------------------------------------------------------------------
END SUBROUTINE DEVAP
! ----------------------------------------------------------------------
SUBROUTINE EVAPO (ETA1,SMC,NSOIL,CMC,ETP1,DT,ZSOIL, & 3,2
SH2O, &
SMCMAX,BEXP,PC,SMCWLT,DKSAT,DWSAT, &
SMCREF,SHDFAC,CMCMAX, &
SMCDRY,CFACTR, &
EDIR,EC,ET,ETT,SFCTMP,Q2,NROOT,RTDIS,FXEXP)
! ----------------------------------------------------------------------
! SUBROUTINE EVAPO
! ----------------------------------------------------------------------
! CALCULATE SOIL MOISTURE FLUX. THE SOIL MOISTURE CONTENT (SMC - A PER
! UNIT VOLUME MEASUREMENT) IS A DEPENDENT VARIABLE THAT IS UPDATED WITH
! PROGNOSTIC EQNS. THE CANOPY MOISTURE CONTENT (CMC) IS ALSO UPDATED.
! FROZEN GROUND VERSION: NEW STATES ADDED: SH2O, AND FROZEN GROUND
! CORRECTION FACTOR, FRZFACT AND PARAMETER SLOPE.
! ----------------------------------------------------------------------
IMPLICIT NONE
INTEGER, INTENT(IN) :: NSOIL, NROOT
INTEGER :: I,K
REAL, INTENT(IN) :: BEXP, CFACTR,CMC,CMCMAX,DKSAT, &
DT,DWSAT,ETP1,FXEXP,PC,Q2,SFCTMP, &
SHDFAC,SMCDRY,SMCMAX,SMCREF,SMCWLT
REAL, INTENT(OUT) :: EC,EDIR,ETA1,ETT
REAL :: CMC2MS
REAL,DIMENSION(1:NSOIL), INTENT(IN) :: RTDIS, SMC, SH2O, ZSOIL
REAL,DIMENSION(1:NSOIL), INTENT(OUT) :: ET
! ----------------------------------------------------------------------
! EXECUTABLE CODE BEGINS HERE IF THE POTENTIAL EVAPOTRANSPIRATION IS
! GREATER THAN ZERO.
! ----------------------------------------------------------------------
EDIR = 0.
EC = 0.
ETT = 0.
DO K = 1,NSOIL
ET (K) = 0.
END DO
! print*,'SHDFAC',SHDFAC,'SMCMAX', SMCMAX,'BEXP',BEXP,
! & 'DKSAT',DKSAT,'DWSAT',DWSAT,'DRY',SMCDRY,'REF',SMCREF,
! & 'WLT',SMCWLT,'FXEX',FXEXP,'SMC',SMC
! ----------------------------------------------------------------------
! RETRIEVE DIRECT EVAPORATION FROM SOIL SURFACE. CALL THIS FUNCTION
! ONLY IF VEG COVER NOT COMPLETE.
! FROZEN GROUND VERSION: SH2O STATES REPLACE SMC STATES.
! ----------------------------------------------------------------------
IF (ETP1 > 0.0) THEN
IF (SHDFAC < 1.) THEN
! CALL DEVAP (EDIR,ETP1,SH2O (1),ZSOIL (1),SHDFAC,SMCMAX,
CALL DEVAP
(EDIR,ETP1,SMC (1),ZSOIL (1),SHDFAC,SMCMAX, &
BEXP,DKSAT,DWSAT,SMCDRY,SMCREF,SMCWLT,FXEXP)
END IF
! ----------------------------------------------------------------------
! INITIALIZE PLANT TOTAL TRANSPIRATION, RETRIEVE PLANT TRANSPIRATION,
! AND ACCUMULATE IT FOR ALL SOIL LAYERS.
! ----------------------------------------------------------------------
IF (SHDFAC > 0.0) THEN
CALL TRANSP
(ET,NSOIL,ETP1,SH2O,CMC,ZSOIL,SHDFAC,SMCWLT, &
CMCMAX,PC,CFACTR,SMCREF,SFCTMP,Q2,NROOT,RTDIS)
DO K = 1,NSOIL
ETT = ETT + ET ( K )
END DO
! ----------------------------------------------------------------------
! CALCULATE CANOPY EVAPORATION.
! IF STATEMENTS TO AVOID TANGENT LINEAR PROBLEMS NEAR CMC=0.0.
! ----------------------------------------------------------------------
IF (CMC > 0.0) THEN
EC = SHDFAC * ( ( CMC / CMCMAX ) ** CFACTR ) * ETP1
ELSE
EC = 0.0
END IF
! ----------------------------------------------------------------------
! EC SHOULD BE LIMITED BY THE TOTAL AMOUNT OF AVAILABLE WATER ON THE
! CANOPY. -F.CHEN, 18-OCT-1994
! ----------------------------------------------------------------------
CMC2MS = CMC / DT
EC = MIN ( CMC2MS, EC )
END IF
END IF
! ----------------------------------------------------------------------
! TOTAL UP EVAP AND TRANSP TYPES TO OBTAIN ACTUAL EVAPOTRANSP
! ----------------------------------------------------------------------
ETA1 = EDIR + ETT + EC
! ----------------------------------------------------------------------
END SUBROUTINE EVAPO
! ----------------------------------------------------------------------
SUBROUTINE FRH2O (FREE,TKELV,SMC,SH2O,SMCMAX,BEXP,PSIS) 3
! ----------------------------------------------------------------------
! SUBROUTINE FRH2O
! ----------------------------------------------------------------------
! CALCULATE AMOUNT OF SUPERCOOLED LIQUID SOIL WATER CONTENT IF
! TEMPERATURE IS BELOW 273.15K (T0). REQUIRES NEWTON-TYPE ITERATION TO
! SOLVE THE NONLINEAR IMPLICIT EQUATION GIVEN IN EQN 17 OF KOREN ET AL
! (1999, JGR, VOL 104(D16), 19569-19585).
! ----------------------------------------------------------------------
! NEW VERSION (JUNE 2001): MUCH FASTER AND MORE ACCURATE NEWTON
! ITERATION ACHIEVED BY FIRST TAKING LOG OF EQN CITED ABOVE -- LESS THAN
! 4 (TYPICALLY 1 OR 2) ITERATIONS ACHIEVES CONVERGENCE. ALSO, EXPLICIT
! 1-STEP SOLUTION OPTION FOR SPECIAL CASE OF PARAMETER CK=0, WHICH
! REDUCES THE ORIGINAL IMPLICIT EQUATION TO A SIMPLER EXPLICIT FORM,
! KNOWN AS THE "FLERCHINGER EQN". IMPROVED HANDLING OF SOLUTION IN THE
! LIMIT OF FREEZING POINT TEMPERATURE T0.
! ----------------------------------------------------------------------
! INPUT:
! TKELV.........TEMPERATURE (Kelvin)
! SMC...........TOTAL SOIL MOISTURE CONTENT (VOLUMETRIC)
! SH2O..........LIQUID SOIL MOISTURE CONTENT (VOLUMETRIC)
! SMCMAX........SATURATION SOIL MOISTURE CONTENT (FROM REDPRM)
! B.............SOIL TYPE "B" PARAMETER (FROM REDPRM)
! PSIS..........SATURATED SOIL MATRIC POTENTIAL (FROM REDPRM)
! OUTPUT:
! FRH2O.........SUPERCOOLED LIQUID WATER CONTENT
! FREE..........SUPERCOOLED LIQUID WATER CONTENT
! ----------------------------------------------------------------------
IMPLICIT NONE
REAL, INTENT(IN) :: BEXP,PSIS,SH2O,SMC,SMCMAX,TKELV
REAL, INTENT(OUT) :: FREE
REAL :: BX,DENOM,DF,DSWL,FK,SWL,SWLK
INTEGER :: NLOG,KCOUNT
! PARAMETER(CK = 0.0)
REAL, PARAMETER :: CK = 8.0, BLIM = 5.5, ERROR = 0.005, &
HLICE = 3.335E5, GS = 9.81,DICE = 920.0, &
DH2O = 1000.0, T0 = 273.15
! ----------------------------------------------------------------------
! LIMITS ON PARAMETER B: B < 5.5 (use parameter BLIM)
! SIMULATIONS SHOWED IF B > 5.5 UNFROZEN WATER CONTENT IS
! NON-REALISTICALLY HIGH AT VERY LOW TEMPERATURES.
! ----------------------------------------------------------------------
BX = BEXP
! ----------------------------------------------------------------------
! INITIALIZING ITERATIONS COUNTER AND ITERATIVE SOLUTION FLAG.
! ----------------------------------------------------------------------
IF (BEXP > BLIM) BX = BLIM
NLOG = 0
! ----------------------------------------------------------------------
! IF TEMPERATURE NOT SIGNIFICANTLY BELOW FREEZING (T0), SH2O = SMC
! ----------------------------------------------------------------------
KCOUNT = 0
! FRH2O = SMC
IF (TKELV > (T0- 1.E-3)) THEN
FREE = SMC
ELSE
! ----------------------------------------------------------------------
! OPTION 1: ITERATED SOLUTION FOR NONZERO CK
! IN KOREN ET AL, JGR, 1999, EQN 17
! ----------------------------------------------------------------------
! INITIAL GUESS FOR SWL (frozen content)
! ----------------------------------------------------------------------
IF (CK /= 0.0) THEN
SWL = SMC - SH2O
! ----------------------------------------------------------------------
! KEEP WITHIN BOUNDS.
! ----------------------------------------------------------------------
IF (SWL > (SMC -0.02)) SWL = SMC -0.02
! ----------------------------------------------------------------------
! START OF ITERATIONS
! ----------------------------------------------------------------------
IF (SWL < 0.) SWL = 0.
1001 Continue
IF (.NOT.( (NLOG < 10) .AND. (KCOUNT == 0))) goto 1002
NLOG = NLOG +1
DF = ALOG ( ( PSIS * GS / HLICE ) * ( ( 1. + CK * SWL )**2.) * &
( SMCMAX / (SMC - SWL) )** BX) - ALOG ( - ( &
TKELV - T0)/ TKELV)
DENOM = 2. * CK / ( 1. + CK * SWL ) + BX / ( SMC - SWL )
SWLK = SWL - DF / DENOM
! ----------------------------------------------------------------------
! BOUNDS USEFUL FOR MATHEMATICAL SOLUTION.
! ----------------------------------------------------------------------
IF (SWLK > (SMC -0.02)) SWLK = SMC - 0.02
IF (SWLK < 0.) SWLK = 0.
! ----------------------------------------------------------------------
! MATHEMATICAL SOLUTION BOUNDS APPLIED.
! ----------------------------------------------------------------------
DSWL = ABS (SWLK - SWL)
! ----------------------------------------------------------------------
! IF MORE THAN 10 ITERATIONS, USE EXPLICIT METHOD (CK=0 APPROX.)
! WHEN DSWL LESS OR EQ. ERROR, NO MORE ITERATIONS REQUIRED.
! ----------------------------------------------------------------------
SWL = SWLK
IF ( DSWL <= ERROR ) THEN
KCOUNT = KCOUNT +1
END IF
! ----------------------------------------------------------------------
! END OF ITERATIONS
! ----------------------------------------------------------------------
! BOUNDS APPLIED WITHIN DO-BLOCK ARE VALID FOR PHYSICAL SOLUTION.
! ----------------------------------------------------------------------
! FRH2O = SMC - SWL
goto 1001
1002 continue
FREE = SMC - SWL
END IF
! ----------------------------------------------------------------------
! END OPTION 1
! ----------------------------------------------------------------------
! ----------------------------------------------------------------------
! OPTION 2: EXPLICIT SOLUTION FOR FLERCHINGER EQ. i.e. CK=0
! IN KOREN ET AL., JGR, 1999, EQN 17
! APPLY PHYSICAL BOUNDS TO FLERCHINGER SOLUTION
! ----------------------------------------------------------------------
IF (KCOUNT == 0) THEN
PRINT *,'Flerchinger USEd in NEW version. Iterations=',NLOG
FK = ( ( (HLICE / (GS * ( - PSIS)))* &
( (TKELV - T0)/ TKELV))** ( -1/ BX))* SMCMAX
! FRH2O = MIN (FK, SMC)
IF (FK < 0.02) FK = 0.02
FREE = MIN (FK, SMC)
! ----------------------------------------------------------------------
! END OPTION 2
! ----------------------------------------------------------------------
END IF
END IF
! ----------------------------------------------------------------------
END SUBROUTINE FRH2O
! ----------------------------------------------------------------------
SUBROUTINE HRT (RHSTS,STC,SMC,SMCMAX,NSOIL,ZSOIL,YY,ZZ1, & 2,16
TBOT,ZBOT,PSISAT,SH2O,DT,BEXP, &
F1,DF1,QUARTZ,CSOIL,AI,BI,CI)
! ----------------------------------------------------------------------
! SUBROUTINE HRT
! ----------------------------------------------------------------------
! CALCULATE THE RIGHT HAND SIDE OF THE TIME TENDENCY TERM OF THE SOIL
! THERMAL DIFFUSION EQUATION. ALSO TO COMPUTE ( PREPARE ) THE MATRIX
! COEFFICIENTS FOR THE TRI-DIAGONAL MATRIX OF THE IMPLICIT TIME SCHEME.
! ----------------------------------------------------------------------
IMPLICIT NONE
LOGICAL :: ITAVG
INTEGER, INTENT(IN) :: NSOIL
INTEGER :: I, K
REAL, INTENT(IN) :: BEXP, CSOIL, DF1, DT,F1,PSISAT,QUARTZ, &
SMCMAX ,TBOT,YY,ZZ1, ZBOT
REAL, DIMENSION(1:NSOIL), INTENT(IN) :: SMC,STC,ZSOIL
REAL, DIMENSION(1:NSOIL), INTENT(INOUT):: SH2O
REAL, DIMENSION(1:NSOIL), INTENT(OUT) :: RHSTS
REAL, DIMENSION(1:NSOLD), INTENT(OUT) :: AI, BI,CI
REAL :: DDZ, DDZ2, DENOM, DF1N, DF1K, DTSDZ, &
DTSDZ2,HCPCT,QTOT,SSOIL,SICE,TAVG,TBK, &
TBK1,TSNSR,TSURF
REAL, PARAMETER :: T0 = 273.15, CAIR = 1004.0, CICE = 2.106E6,&
CH2O = 4.2E6
! ----------------------------------------------------------------------
! INITIALIZE LOGICAL FOR SOIL LAYER TEMPERATURE AVERAGING.
! ----------------------------------------------------------------------
ITAVG = .TRUE.
! ----------------------------------------------------------------------
! BEGIN SECTION FOR TOP SOIL LAYER
! ----------------------------------------------------------------------
! CALC THE HEAT CAPACITY OF THE TOP SOIL LAYER
! ----------------------------------------------------------------------
HCPCT = SH2O (1)* CH2O + (1.0- SMCMAX)* CSOIL + (SMCMAX - SMC (1))&
* CAIR &
+ ( SMC (1) - SH2O (1) )* CICE
! ----------------------------------------------------------------------
! CALC THE MATRIX COEFFICIENTS AI, BI, AND CI FOR THE TOP LAYER
! ----------------------------------------------------------------------
DDZ = 1.0 / ( -0.5 * ZSOIL (2) )
AI (1) = 0.0
CI (1) = (DF1 * DDZ) / (ZSOIL (1) * HCPCT)
! ----------------------------------------------------------------------
! CALCULATE THE VERTICAL SOIL TEMP GRADIENT BTWN THE 1ST AND 2ND SOIL
! LAYERS. THEN CALCULATE THE SUBSURFACE HEAT FLUX. USE THE TEMP
! GRADIENT AND SUBSFC HEAT FLUX TO CALC "RIGHT-HAND SIDE TENDENCY
! TERMS", OR "RHSTS", FOR TOP SOIL LAYER.
! ----------------------------------------------------------------------
BI (1) = - CI (1) + DF1 / (0.5 * ZSOIL (1) * ZSOIL (1)* HCPCT * &
ZZ1)
DTSDZ = (STC (1) - STC (2)) / ( -0.5 * ZSOIL (2))
SSOIL = DF1 * (STC (1) - YY) / (0.5 * ZSOIL (1) * ZZ1)
! RHSTS(1) = (DF1 * DTSDZ - SSOIL) / (ZSOIL(1) * HCPCT)
DENOM = (ZSOIL (1) * HCPCT)
! ----------------------------------------------------------------------
! NEXT CAPTURE THE VERTICAL DIFFERENCE OF THE HEAT FLUX AT TOP AND
! BOTTOM OF FIRST SOIL LAYER FOR USE IN HEAT FLUX CONSTRAINT APPLIED TO
! POTENTIAL SOIL FREEZING/THAWING IN ROUTINE SNKSRC.
! ----------------------------------------------------------------------
! QTOT = SSOIL - DF1*DTSDZ
RHSTS (1) = (DF1 * DTSDZ - SSOIL) / DENOM
! ----------------------------------------------------------------------
! CALCULATE FROZEN WATER CONTENT IN 1ST SOIL LAYER.
! ----------------------------------------------------------------------
QTOT = -1.0* RHSTS (1)* DENOM
! ----------------------------------------------------------------------
! IF TEMPERATURE AVERAGING INVOKED (ITAVG=TRUE; ELSE SKIP):
! SET TEMP "TSURF" AT TOP OF SOIL COLUMN (FOR USE IN FREEZING SOIL
! PHYSICS LATER IN FUNCTION SUBROUTINE SNKSRC). IF SNOWPACK CONTENT IS
! ZERO, THEN TSURF EXPRESSION BELOW GIVES TSURF = SKIN TEMP. IF
! SNOWPACK IS NONZERO (HENCE ARGUMENT ZZ1=1), THEN TSURF EXPRESSION
! BELOW YIELDS SOIL COLUMN TOP TEMPERATURE UNDER SNOWPACK. THEN
! CALCULATE TEMPERATURE AT BOTTOM INTERFACE OF 1ST SOIL LAYER FOR USE
! LATER IN FUNCTION SUBROUTINE SNKSRC
! ----------------------------------------------------------------------
SICE = SMC (1) - SH2O (1)
IF (ITAVG) THEN
TSURF = (YY + (ZZ1-1) * STC (1)) / ZZ1
! ----------------------------------------------------------------------
! IF FROZEN WATER PRESENT OR ANY OF LAYER-1 MID-POINT OR BOUNDING
! INTERFACE TEMPERATURES BELOW FREEZING, THEN CALL SNKSRC TO
! COMPUTE HEAT SOURCE/SINK (AND CHANGE IN FROZEN WATER CONTENT)
! DUE TO POSSIBLE SOIL WATER PHASE CHANGE
! ----------------------------------------------------------------------
CALL TBND
(STC (1),STC (2),ZSOIL,ZBOT,1,NSOIL,TBK)
IF ( (SICE > 0.) .OR. (STC (1) < T0) .OR. &
(TSURF < T0) .OR. (TBK < T0) ) THEN
! TSNSR = SNKSRC (TAVG,SMC(1),SH2O(1),
CALL TMPAVG
(TAVG,TSURF,STC (1),TBK,ZSOIL,NSOIL,1)
CALL SNKSRC
(TSNSR,TAVG,SMC (1),SH2O (1), &
ZSOIL,NSOIL,SMCMAX,PSISAT,BEXP,DT,1,QTOT)
! RHSTS(1) = RHSTS(1) - TSNSR / ( ZSOIL(1) * HCPCT )
RHSTS (1) = RHSTS (1) - TSNSR / DENOM
END IF
ELSE
! TSNSR = SNKSRC (STC(1),SMC(1),SH2O(1),
IF ( (SICE > 0.) .OR. (STC (1) < T0) ) THEN
CALL SNKSRC
(TSNSR,STC (1),SMC (1),SH2O (1), &
ZSOIL,NSOIL,SMCMAX,PSISAT,BEXP,DT,1,QTOT)
! RHSTS(1) = RHSTS(1) - TSNSR / ( ZSOIL(1) * HCPCT )
RHSTS (1) = RHSTS (1) - TSNSR / DENOM
END IF
! ----------------------------------------------------------------------
! THIS ENDS SECTION FOR TOP SOIL LAYER.
! ----------------------------------------------------------------------
END IF
! INITIALIZE DDZ2
! ----------------------------------------------------------------------
DDZ2 = 0.0
DF1K = DF1
! ----------------------------------------------------------------------
! LOOP THRU THE REMAINING SOIL LAYERS, REPEATING THE ABOVE PROCESS
! (EXCEPT SUBSFC OR "GROUND" HEAT FLUX NOT REPEATED IN LOWER LAYERS)
! ----------------------------------------------------------------------
! CALCULATE HEAT CAPACITY FOR THIS SOIL LAYER.
! ----------------------------------------------------------------------
DO K = 2,NSOIL
HCPCT = SH2O (K)* CH2O + (1.0- SMCMAX)* CSOIL + (SMCMAX - SMC ( &
K))* CAIR + ( SMC (K) - SH2O (K) )* CICE
! ----------------------------------------------------------------------
! THIS SECTION FOR LAYER 2 OR GREATER, BUT NOT LAST LAYER.
! ----------------------------------------------------------------------
! CALCULATE THERMAL DIFFUSIVITY FOR THIS LAYER.
! ----------------------------------------------------------------------
IF (K /= NSOIL) THEN
! ----------------------------------------------------------------------
! CALC THE VERTICAL SOIL TEMP GRADIENT THRU THIS LAYER
! ----------------------------------------------------------------------
CALL TDFCND
(DF1N,SMC (K),QUARTZ,SMCMAX,SH2O (K))
DENOM = 0.5 * ( ZSOIL (K -1) - ZSOIL (K +1) )
! ----------------------------------------------------------------------
! CALC THE MATRIX COEF, CI, AFTER CALC'NG ITS PARTIAL PRODUCT
! ----------------------------------------------------------------------
DTSDZ2 = ( STC (K) - STC (K +1) ) / DENOM
DDZ2 = 2. / (ZSOIL (K -1) - ZSOIL (K +1))
! ----------------------------------------------------------------------
! IF TEMPERATURE AVERAGING INVOKED (ITAVG=TRUE; ELSE SKIP): CALCULATE
! TEMP AT BOTTOM OF LAYER.
! ----------------------------------------------------------------------
CI (K) = - DF1N * DDZ2 / ( (ZSOIL (K -1) - ZSOIL (K)) * &
HCPCT)
IF (ITAVG) THEN
CALL TBND
(STC (K),STC (K +1),ZSOIL,ZBOT,K,NSOIL,TBK1)
END IF
ELSE
! ----------------------------------------------------------------------
! SPECIAL CASE OF BOTTOM SOIL LAYER: CALCULATE THERMAL DIFFUSIVITY FOR
! BOTTOM LAYER.
! ----------------------------------------------------------------------
! ----------------------------------------------------------------------
! CALC THE VERTICAL SOIL TEMP GRADIENT THRU BOTTOM LAYER.
! ----------------------------------------------------------------------
CALL TDFCND
(DF1N,SMC (K),QUARTZ,SMCMAX,SH2O (K))
DENOM = .5 * (ZSOIL (K -1) + ZSOIL (K)) - ZBOT
! ----------------------------------------------------------------------
! SET MATRIX COEF, CI TO ZERO IF BOTTOM LAYER.
! ----------------------------------------------------------------------
DTSDZ2 = (STC (K) - TBOT) / DENOM
! ----------------------------------------------------------------------
! IF TEMPERATURE AVERAGING INVOKED (ITAVG=TRUE; ELSE SKIP): CALCULATE
! TEMP AT BOTTOM OF LAST LAYER.
! ----------------------------------------------------------------------
CI (K) = 0.
IF (ITAVG) THEN
CALL TBND
(STC (K),TBOT,ZSOIL,ZBOT,K,NSOIL,TBK1)
END IF
! ----------------------------------------------------------------------
! THIS ENDS SPECIAL LOOP FOR BOTTOM LAYER.
END IF
! ----------------------------------------------------------------------
! CALCULATE RHSTS FOR THIS LAYER AFTER CALC'NG A PARTIAL PRODUCT.
! ----------------------------------------------------------------------
DENOM = ( ZSOIL (K) - ZSOIL (K -1) ) * HCPCT
RHSTS (K) = ( DF1N * DTSDZ2- DF1K * DTSDZ ) / DENOM
QTOT = -1.0* DENOM * RHSTS (K)
SICE = SMC (K) - SH2O (K)
IF (ITAVG) THEN
CALL TMPAVG
(TAVG,TBK,STC (K),TBK1,ZSOIL,NSOIL,K)
! TSNSR = SNKSRC(TAVG,SMC(K),SH2O(K),ZSOIL,NSOIL,
IF ( (SICE > 0.) .OR. (STC (K) < T0) .OR. &
(TBK .lt. T0) .OR. (TBK1 .lt. T0) ) THEN
CALL SNKSRC
(TSNSR,TAVG,SMC (K),SH2O (K),ZSOIL,NSOIL, &
SMCMAX,PSISAT,BEXP,DT,K,QTOT)
RHSTS (K) = RHSTS (K) - TSNSR / DENOM
END IF
ELSE
! TSNSR = SNKSRC(STC(K),SMC(K),SH2O(K),ZSOIL,NSOIL,
IF ( (SICE > 0.) .OR. (STC (K) < T0) ) THEN
CALL SNKSRC
(TSNSR,STC (K),SMC (K),SH2O (K),ZSOIL,NSOIL, &
SMCMAX,PSISAT,BEXP,DT,K,QTOT)
RHSTS (K) = RHSTS (K) - TSNSR / DENOM
END IF
END IF
! ----------------------------------------------------------------------
! CALC MATRIX COEFS, AI, AND BI FOR THIS LAYER.
! ----------------------------------------------------------------------
AI (K) = - DF1 * DDZ / ( (ZSOIL (K -1) - ZSOIL (K)) * HCPCT)
! ----------------------------------------------------------------------
! RESET VALUES OF DF1, DTSDZ, DDZ, AND TBK FOR LOOP TO NEXT SOIL LAYER.
! ----------------------------------------------------------------------
BI (K) = - (AI (K) + CI (K))
TBK = TBK1
DF1K = DF1N
DTSDZ = DTSDZ2
DDZ = DDZ2
END DO
! ----------------------------------------------------------------------
END SUBROUTINE HRT
! ----------------------------------------------------------------------
SUBROUTINE HRTICE (RHSTS,STC,NSOIL,ZSOIL,YY,ZZ1,DF1,AI,BI,CI) 2
! ----------------------------------------------------------------------
! SUBROUTINE HRTICE
! ----------------------------------------------------------------------
! CALCULATE THE RIGHT HAND SIDE OF THE TIME TENDENCY TERM OF THE SOIL
! THERMAL DIFFUSION EQUATION IN THE CASE OF SEA-ICE PACK. ALSO TO
! COMPUTE (PREPARE) THE MATRIX COEFFICIENTS FOR THE TRI-DIAGONAL MATRIX
! OF THE IMPLICIT TIME SCHEME.
! ----------------------------------------------------------------------
IMPLICIT NONE
INTEGER, INTENT(IN) :: NSOIL
INTEGER :: K
REAL, INTENT(IN) :: DF1,YY,ZZ1
REAL, DIMENSION(1:NSOLD), INTENT(OUT):: AI, BI,CI
REAL, DIMENSION(1:NSOIL), INTENT(IN) :: STC, ZSOIL
REAL, DIMENSION(1:NSOIL), INTENT(OUT):: RHSTS
REAL :: DDZ,DDZ2,DENOM,DTSDZ,DTSDZ2,SSOIL, &
ZBOT,TBOT
REAL, PARAMETER :: HCPCT = 1.72396E+6
! ----------------------------------------------------------------------
! SET A NOMINAL UNIVERSAL VALUE OF THE SEA-ICE SPECIFIC HEAT CAPACITY,
! HCPCT = 1880.0*917.0.
! ----------------------------------------------------------------------
DATA TBOT /271.16/
! ----------------------------------------------------------------------
! THE INPUT ARGUMENT DF1 IS A UNIVERSALLY CONSTANT VALUE OF SEA-ICE
! THERMAL DIFFUSIVITY, SET IN ROUTINE SNOPAC AS DF1 = 2.2.
! ----------------------------------------------------------------------
! SET ICE PACK DEPTH. USE TBOT AS ICE PACK LOWER BOUNDARY TEMPERATURE
! (THAT OF UNFROZEN SEA WATER AT BOTTOM OF SEA ICE PACK). ASSUME ICE
! PACK IS OF N=NSOIL LAYERS SPANNING A UNIFORM CONSTANT ICE PACK
! THICKNESS AS DEFINED BY ZSOIL(NSOIL) IN ROUTINE SFLX.
! ----------------------------------------------------------------------
! ----------------------------------------------------------------------
! CALC THE MATRIX COEFFICIENTS AI, BI, AND CI FOR THE TOP LAYER
! ----------------------------------------------------------------------
ZBOT = ZSOIL (NSOIL)
DDZ = 1.0 / ( -0.5 * ZSOIL (2) )
AI (1) = 0.0
CI (1) = (DF1 * DDZ) / (ZSOIL (1) * HCPCT)
! ----------------------------------------------------------------------
! CALC THE VERTICAL SOIL TEMP GRADIENT BTWN THE TOP AND 2ND SOIL LAYERS.
! RECALC/ADJUST THE SOIL HEAT FLUX. USE THE GRADIENT AND FLUX TO CALC
! RHSTS FOR THE TOP SOIL LAYER.
! ----------------------------------------------------------------------
BI (1) = - CI (1) + DF1/ (0.5 * ZSOIL (1) * ZSOIL (1) * HCPCT * &
ZZ1)
DTSDZ = ( STC (1) - STC (2) ) / ( -0.5 * ZSOIL (2) )
SSOIL = DF1 * ( STC (1) - YY ) / ( 0.5 * ZSOIL (1) * ZZ1 )
! ----------------------------------------------------------------------
! INITIALIZE DDZ2
! ----------------------------------------------------------------------
RHSTS (1) = ( DF1 * DTSDZ - SSOIL ) / ( ZSOIL (1) * HCPCT )
! ----------------------------------------------------------------------
! LOOP THRU THE REMAINING SOIL LAYERS, REPEATING THE ABOVE PROCESS
! ----------------------------------------------------------------------
DDZ2 = 0.0
DO K = 2,NSOIL
! ----------------------------------------------------------------------
! CALC THE VERTICAL SOIL TEMP GRADIENT THRU THIS LAYER.
! ----------------------------------------------------------------------
IF (K /= NSOIL) THEN
DENOM = 0.5 * ( ZSOIL (K -1) - ZSOIL (K +1) )
! ----------------------------------------------------------------------
! CALC THE MATRIX COEF, CI, AFTER CALC'NG ITS PARTIAL PRODUCT.
! ----------------------------------------------------------------------
DTSDZ2 = ( STC (K) - STC (K +1) ) / DENOM
DDZ2 = 2. / (ZSOIL (K -1) - ZSOIL (K +1))
CI (K) = - DF1 * DDZ2 / ( (ZSOIL (K -1) - ZSOIL (K))*HCPCT)
! ----------------------------------------------------------------------
! CALC THE VERTICAL SOIL TEMP GRADIENT THRU THE LOWEST LAYER.
! ----------------------------------------------------------------------
ELSE
! ----------------------------------------------------------------------
! SET MATRIX COEF, CI TO ZERO.
! ----------------------------------------------------------------------
DTSDZ2 = (STC (K) - TBOT)/ (.5 * (ZSOIL (K -1) + ZSOIL (K)) &
- ZBOT)
CI (K) = 0.
! ----------------------------------------------------------------------
! CALC RHSTS FOR THIS LAYER AFTER CALC'NG A PARTIAL PRODUCT.
! ----------------------------------------------------------------------
END IF
DENOM = ( ZSOIL (K) - ZSOIL (K -1) ) * HCPCT
! ----------------------------------------------------------------------
! CALC MATRIX COEFS, AI, AND BI FOR THIS LAYER.
! ----------------------------------------------------------------------
RHSTS (K) = ( DF1 * DTSDZ2- DF1 * DTSDZ ) / DENOM
AI (K) = - DF1 * DDZ / ( (ZSOIL (K -1) - ZSOIL (K)) * HCPCT)
! ----------------------------------------------------------------------
! RESET VALUES OF DTSDZ AND DDZ FOR LOOP TO NEXT SOIL LYR.
! ----------------------------------------------------------------------
BI (K) = - (AI (K) + CI (K))
DTSDZ = DTSDZ2
DDZ = DDZ2
END DO
! ----------------------------------------------------------------------
END SUBROUTINE HRTICE
! ----------------------------------------------------------------------
SUBROUTINE HSTEP (STCOUT,STCIN,RHSTS,DT,NSOIL,AI,BI,CI) 4,2
! ----------------------------------------------------------------------
! SUBROUTINE HSTEP
! ----------------------------------------------------------------------
! CALCULATE/UPDATE THE SOIL TEMPERATURE FIELD.
! ----------------------------------------------------------------------
IMPLICIT NONE
INTEGER, INTENT(IN) :: NSOIL
INTEGER :: K
REAL, DIMENSION(1:NSOIL), INTENT(IN):: STCIN
REAL, DIMENSION(1:NSOIL), INTENT(OUT):: STCOUT
REAL, DIMENSION(1:NSOIL), INTENT(INOUT):: RHSTS
REAL, DIMENSION(1:NSOLD), INTENT(INOUT):: AI,BI,CI
REAL, DIMENSION(1:NSOIL) :: RHSTSin
REAL, DIMENSION(1:NSOLD) :: CIin
REAL :: DT
! ----------------------------------------------------------------------
! CREATE FINITE DIFFERENCE VALUES FOR USE IN ROSR12 ROUTINE
! ----------------------------------------------------------------------
DO K = 1,NSOIL
RHSTS (K) = RHSTS (K) * DT
AI (K) = AI (K) * DT
BI (K) = 1. + BI (K) * DT
CI (K) = CI (K) * DT
END DO
! ----------------------------------------------------------------------
! COPY VALUES FOR INPUT VARIABLES BEFORE CALL TO ROSR12
! ----------------------------------------------------------------------
DO K = 1,NSOIL
RHSTSin (K) = RHSTS (K)
END DO
DO K = 1,NSOLD
CIin (K) = CI (K)
END DO
! ----------------------------------------------------------------------
! SOLVE THE TRI-DIAGONAL MATRIX EQUATION
! ----------------------------------------------------------------------
CALL ROSR12
(CI,AI,BI,CIin,RHSTSin,RHSTS,NSOIL)
! ----------------------------------------------------------------------
! CALC/UPDATE THE SOIL TEMPS USING MATRIX SOLUTION
! ----------------------------------------------------------------------
DO K = 1,NSOIL
STCOUT (K) = STCIN (K) + CI (K)
END DO
! ----------------------------------------------------------------------
END SUBROUTINE HSTEP
! ----------------------------------------------------------------------
SUBROUTINE NOPAC (ETP,ETA,PRCP,SMC,SMCMAX,SMCWLT, & 2,10
SMCREF,SMCDRY,CMC,CMCMAX,NSOIL,DT,SHDFAC, &
SBETA,Q2,T1,SFCTMP,T24,TH2,FDOWN,F1,SSOIL, &
STC,EPSCA,BEXP,PC,RCH,RR,CFACTR, &
SH2O,SLOPE,KDT,FRZFACT,PSISAT,ZSOIL, &
DKSAT,DWSAT,TBOT,ZBOT,RUNOFF1,RUNOFF2, &
RUNOFF3,EDIR,EC,ET,ETT,NROOT,ICE,RTDIS, &
QUARTZ,FXEXP,CSOIL, &
BETA,DRIP,DEW,FLX1,FLX3)
! ----------------------------------------------------------------------
! SUBROUTINE NOPAC
! ----------------------------------------------------------------------
! CALCULATE SOIL MOISTURE AND HEAT FLUX VALUES AND UPDATE SOIL MOISTURE
! CONTENT AND SOIL HEAT CONTENT VALUES FOR THE CASE WHEN NO SNOW PACK IS
! PRESENT.
! ----------------------------------------------------------------------
IMPLICIT NONE
INTEGER, INTENT(IN) :: ICE, NROOT,NSOIL
INTEGER :: K
REAL, INTENT(IN) :: BEXP,CFACTR, CMCMAX,CSOIL,DKSAT,DT,DWSAT, &
EPSCA,ETP,FDOWN,F1,FXEXP,FRZFACT,KDT,PC, &
PRCP,PSISAT,Q2,QUARTZ,RCH,RR,SBETA,SFCTMP,&
SHDFAC,SLOPE,SMCDRY,SMCMAX,SMCREF,SMCWLT, &
T24,TBOT,TH2,ZBOT
REAL, INTENT(INOUT) :: CMC,BETA,T1
REAL, INTENT(OUT) :: DEW,DRIP,EC,EDIR,ETA,ETT,FLX1,FLX3, &
RUNOFF1,RUNOFF2,RUNOFF3,SSOIL
REAL, DIMENSION(1:NSOIL),INTENT(IN) :: RTDIS,ZSOIL
REAL, DIMENSION(1:NSOIL),INTENT(OUT) :: ET
REAL, DIMENSION(1:NSOIL), INTENT(INOUT) :: SMC,SH2O,STC
REAL, DIMENSION(1:NSOIL) :: ET1
REAL :: EC1,EDIR1,ETT1,DF1,ETA1,ETP1,PRCP1,YY, &
YYNUM,ZZ1
! ----------------------------------------------------------------------
! EXECUTABLE CODE BEGINS HERE:
! CONVERT ETP Fnd PRCP FROM KG M-2 S-1 TO M S-1 AND INITIALIZE DEW.
! ----------------------------------------------------------------------
PRCP1 = PRCP * 0.001
ETP1 = ETP * 0.001
DEW = 0.0
! ----------------------------------------------------------------------
! INITIALIZE EVAP TERMS.
! ----------------------------------------------------------------------
EDIR = 0.
EDIR1 = 0.
EC1 = 0.
EC = 0.
DO K = 1,NSOIL
ET(K) = 0.
ET1(K) = 0.
END DO
ETT = 0.
ETT1 = 0.
IF (ETP > 0.0) THEN
CALL EVAPO
(ETA1,SMC,NSOIL,CMC,ETP1,DT,ZSOIL, &
SH2O, &
SMCMAX,BEXP,PC,SMCWLT,DKSAT,DWSAT, &
SMCREF,SHDFAC,CMCMAX, &
SMCDRY,CFACTR, &
EDIR1,EC1,ET1,ETT1,SFCTMP,Q2,NROOT,RTDIS,FXEXP)
CALL SMFLX
(SMC,NSOIL,CMC,DT,PRCP1,ZSOIL, &
SH2O,SLOPE,KDT,FRZFACT, &
SMCMAX,BEXP,SMCWLT,DKSAT,DWSAT, &
SHDFAC,CMCMAX, &
RUNOFF1,RUNOFF2,RUNOFF3, &
EDIR1,EC1,ET1, &
DRIP)
! ----------------------------------------------------------------------
! CONVERT MODELED EVAPOTRANSPIRATION FROM M S-1 TO KG M-2 S-1.
! ----------------------------------------------------------------------
ETA = ETA1 * 1000.0
! ----------------------------------------------------------------------
! IF ETP < 0, ASSUME DEW FORMS (TRANSFORM ETP1 INTO DEW AND REINITIALIZE
! ETP1 TO ZERO).
! ----------------------------------------------------------------------
ELSE
DEW = - ETP1
! ----------------------------------------------------------------------
! CONVERT PRCP FROM 'KG M-2 S-1' TO 'M S-1' AND ADD DEW AMOUNT.
! ----------------------------------------------------------------------
ETP1 = 0.0
PRCP1 = PRCP1+ DEW
CALL EVAPO
(ETA1,SMC,NSOIL,CMC,ETP1,DT,ZSOIL, &
SH2O, &
SMCMAX,BEXP,PC,SMCWLT,DKSAT,DWSAT, &
SMCREF,SHDFAC,CMCMAX, &
SMCDRY,CFACTR, &
EDIR1,EC1,ET1,ETT1,SFCTMP,Q2,NROOT,RTDIS,FXEXP)
CALL SMFLX
(SMC,NSOIL,CMC,DT,PRCP1,ZSOIL, &
SH2O,SLOPE,KDT,FRZFACT, &
SMCMAX,BEXP,SMCWLT,DKSAT,DWSAT, &
SHDFAC,CMCMAX, &
RUNOFF1,RUNOFF2,RUNOFF3, &
EDIR1,EC1,ET1, &
DRIP)
! ----------------------------------------------------------------------
! CONVERT MODELED EVAPOTRANSPIRATION FROM 'M S-1' TO 'KG M-2 S-1'.
! ----------------------------------------------------------------------
ETA = ETA1 * 1000.0
END IF
! ----------------------------------------------------------------------
! BASED ON ETP AND E VALUES, DETERMINE BETA
! ----------------------------------------------------------------------
IF ( ETP <= 0.0 ) THEN
BETA = 0.0
IF ( ETP < 0.0 ) THEN
BETA = 1.0
ETA = ETP
END IF
ELSE
BETA = ETA / ETP
END IF
! ----------------------------------------------------------------------
! CONVERT MODELED EVAPOTRANSPIRATION COMPONENTS 'M S-1' TO 'KG M-2 S-1'.
! ----------------------------------------------------------------------
EDIR = EDIR1*1000.
EC = EC1*1000.
DO K = 1,NSOIL
ET(K) = ET1(K)*1000.
END DO
ETT = ETT1*1000.
! ----------------------------------------------------------------------
! GET SOIL THERMAL DIFFUXIVITY/CONDUCTIVITY FOR TOP SOIL LYR,
! CALC. ADJUSTED TOP LYR SOIL TEMP AND ADJUSTED SOIL FLUX, THEN
! CALL SHFLX TO COMPUTE/UPDATE SOIL HEAT FLUX AND SOIL TEMPS.
! ----------------------------------------------------------------------
CALL TDFCND
(DF1,SMC (1),QUARTZ,SMCMAX,SH2O (1))
! ----------------------------------------------------------------------
! VEGETATION GREENNESS FRACTION REDUCTION IN SUBSURFACE HEAT FLUX
! VIA REDUCTION FACTOR, WHICH IS CONVENIENT TO APPLY HERE TO THERMAL
! DIFFUSIVITY THAT IS LATER USED IN HRT TO COMPUTE SUB SFC HEAT FLUX
! (SEE ADDITIONAL COMMENTS ON VEG EFFECT SUB-SFC HEAT FLX IN
! ROUTINE SFLX)
! ----------------------------------------------------------------------
DF1 = DF1 * EXP (SBETA * SHDFAC)
! ----------------------------------------------------------------------
! COMPUTE INTERMEDIATE TERMS PASSED TO ROUTINE HRT (VIA ROUTINE
! SHFLX BELOW) FOR USE IN COMPUTING SUBSURFACE HEAT FLUX IN HRT
! ----------------------------------------------------------------------
YYNUM = FDOWN - SIGMA * T24
YY = SFCTMP + (YYNUM / RCH + TH2- SFCTMP - BETA * EPSCA) / RR
ZZ1 = DF1 / ( -0.5 * ZSOIL (1) * RCH * RR ) + 1.0
CALL SHFLX
(SSOIL,STC,SMC,SMCMAX,NSOIL,T1,DT,YY,ZZ1,ZSOIL, &
TBOT,ZBOT,SMCWLT,PSISAT,SH2O,BEXP,F1,DF1,ICE, &
QUARTZ,CSOIL)
! ----------------------------------------------------------------------
! SET FLX1 AND FLX3 (SNOPACK PHASE CHANGE HEAT FLUXES) TO ZERO SINCE
! THEY ARE NOT USED HERE IN SNOPAC. FLX2 (FREEZING RAIN HEAT FLUX) WAS
! SIMILARLY INITIALIZED IN THE PENMAN ROUTINE.
! ----------------------------------------------------------------------
FLX1 = 0.0
FLX3 = 0.0
! ----------------------------------------------------------------------
END SUBROUTINE NOPAC
! ----------------------------------------------------------------------
SUBROUTINE PENMAN (SFCTMP,SFCPRS,CH,T2V,TH2,PRCP,FDOWN,T24,SSOIL, & 2
& Q2,Q2SAT,ETP,RCH,EPSCA,RR,SNOWNG,FRZGRA, &
& DQSDT2,FLX2)
! ----------------------------------------------------------------------
! SUBROUTINE PENMAN
! ----------------------------------------------------------------------
! CALCULATE POTENTIAL EVAPORATION FOR THE CURRENT POINT. VARIOUS
! PARTIAL SUMS/PRODUCTS ARE ALSO CALCULATED AND PASSED BACK TO THE
! CALLING ROUTINE FOR LATER USE.
! ----------------------------------------------------------------------
IMPLICIT NONE
LOGICAL, INTENT(IN) :: SNOWNG, FRZGRA
REAL, INTENT(IN) :: CH, DQSDT2,FDOWN,PRCP, &
Q2, Q2SAT,SSOIL, SFCPRS, SFCTMP, &
T2V, TH2
REAL, INTENT(OUT) :: EPSCA,ETP,FLX2,RCH,RR,T24
REAL :: A, DELTA, FNET,RAD,RHO
REAL, PARAMETER :: ELCP = 2.4888E+3, LSUBC = 2.501000E+6,CP = 1004.6
! ----------------------------------------------------------------------
! EXECUTABLE CODE BEGINS HERE:
! ----------------------------------------------------------------------
! ----------------------------------------------------------------------
! PREPARE PARTIAL QUANTITIES FOR PENMAN EQUATION.
! ----------------------------------------------------------------------
FLX2 = 0.0
DELTA = ELCP * DQSDT2
T24 = SFCTMP * SFCTMP * SFCTMP * SFCTMP
RR = T24 * 6.48E-8 / (SFCPRS * CH) + 1.0
RHO = SFCPRS / (RD * T2V)
! ----------------------------------------------------------------------
! ADJUST THE PARTIAL SUMS / PRODUCTS WITH THE LATENT HEAT
! EFFECTS CAUSED BY FALLING PRECIPITATION.
! ----------------------------------------------------------------------
RCH = RHO * CP * CH
IF (.NOT. SNOWNG) THEN
IF (PRCP > 0.0) RR = RR + CPH2O * PRCP / RCH
ELSE
RR = RR + CPICE * PRCP / RCH
END IF
! ----------------------------------------------------------------------
! INCLUDE THE LATENT HEAT EFFECTS OF FRZNG RAIN CONVERTING TO ICE ON
! IMPACT IN THE CALCULATION OF FLX2 AND FNET.
! ----------------------------------------------------------------------
FNET = FDOWN - SIGMA * T24- SSOIL
IF (FRZGRA) THEN
FLX2 = - LSUBF * PRCP
FNET = FNET - FLX2
! ----------------------------------------------------------------------
! FINISH PENMAN EQUATION CALCULATIONS.
! ----------------------------------------------------------------------
END IF
RAD = FNET / RCH + TH2- SFCTMP
A = ELCP * (Q2SAT - Q2)
EPSCA = (A * RR + RAD * DELTA) / (DELTA + RR)
ETP = EPSCA * RCH / LSUBC
! ----------------------------------------------------------------------
END SUBROUTINE PENMAN
! ----------------------------------------------------------------------
SUBROUTINE REDPRM (VEGTYP,SOILTYP,SLOPETYP,CFACTR,CMCMAX,RSMAX, & 2
TOPT, &
REFKDT,KDT,SBETA, SHDFAC,RSMIN,RGL,HS,ZBOT,FRZX, &
PSISAT,SLOPE,SNUP,SALP,BEXP,DKSAT,DWSAT, &
SMCMAX,SMCWLT,SMCREF,SMCDRY,F1,QUARTZ,FXEXP, &
RTDIS,SLDPTH,ZSOIL, NROOT,NSOIL,Z0BRD,CZIL,LAI, &
CSOIL,ALBBRD,PTU,LLANDUSE,LSOIL,LOCAL)
IMPLICIT NONE
! ----------------------------------------------------------------------
! Internally set (default valuess)
! all soil and vegetation parameters required for the execusion oF
! the Noah lsm are defined in VEGPARM.TBL, SOILPARM.TB, and GENPARM.TBL.
! ----------------------------------------------------------------------
! Vegetation parameters:
! ALBBRD: SFC background snow-free albedo
! CMXTBL: MAX CNPY Capacity
! Z0BRD: Background roughness length
! SHDFAC: Green vegetation fraction
! NROOT: Rooting depth
! RSMIN: Mimimum stomatal resistance
! RSMAX: Max. stomatal resistance
! RGL: Parameters used in radiation stress function
! HS: Parameter used in vapor pressure deficit functio
! TOPT: Optimum transpiration air temperature.
! CMCMAX: Maximum canopy water capacity
! CFACTR: Parameter used in the canopy inteception calculation
! SNUP: Threshold snow depth (in water equivalent m) that
! implies 100 percent snow cover
! LAI: Leaf area index
!
! ----------------------------------------------------------------------
! Soil parameters:
! SMCMAX: MAX soil moisture content (porosity)
! SMCREF: Reference soil moisture (field capacity)
! SMCWLT: Wilting point soil moisture
! SMCWLT: Air dry soil moist content limits
! SSATPSI: SAT (saturation) soil potential
! DKSAT: SAT soil conductivity
! BEXP: B parameter
! SSATDW: SAT soil diffusivity
! F1: Soil thermal diffusivity/conductivity coef.
! QUARTZ: Soil quartz content
! Modified by F. Chen (12/22/97) to use the STATSGO soil map
! Modified By F. Chen (01/22/00) to include PLaya, Lava, and White San
! Modified By F. Chen (08/05/02) to include additional parameters for the Noah
! NOTE: SATDW = BB*SATDK*(SATPSI/MAXSMC)
! F11 = ALOG10(SATPSI) + BB*ALOG10(MAXSMC) + 2.0
! REFSMC1=MAXSMC*(5.79E-9/SATDK)**(1/(2*BB+3)) 5.79E-9 m/s= 0.5 mm
! REFSMC=REFSMC1+1./3.(MAXSMC-REFSMC1)
! WLTSMC1=MAXSMC*(200./SATPSI)**(-1./BB) (Wetzel and Chang, 198
! WLTSMC=WLTSMC1-0.5*WLTSMC1
! Note: the values for playa is set for it to have a thermal conductivit
! as sand and to have a hydrulic conductivity as clay
!
! ----------------------------------------------------------------------
! Class parameter 'SLOPETYP' was included to estimate linear reservoir
! coefficient 'SLOPE' to the baseflow runoff out of the bottom layer.
! lowest class (slopetyp=0) means highest slope parameter = 1.
! definition of slopetyp from 'zobler' slope type:
! slope class percent slope
! 1 0-8
! 2 8-30
! 3 > 30
! 4 0-30
! 5 0-8 & > 30
! 6 8-30 & > 30
! 7 0-8, 8-30, > 30
! 9 GLACIAL ICE
! BLANK OCEAN/SEA
! SLOPE_DATA: linear reservoir coefficient
! SBETA_DATA: parameter used to caluculate vegetation effect on soil heat
! FXEXP_DAT: soil evaporation exponent used in DEVAP
! CSOIL_DATA: soil heat capacity [J M-3 K-1]
! SALP_DATA: shape parameter of distribution function of snow cover
! REFDK_DATA and REFKDT_DATA: parameters in the surface runoff parameteriz
! FRZK_DATA: frozen ground parameter
! ZBOT_DATA: depth[M] of lower boundary soil temperature
! CZIL_DATA: calculate roughness length of heat
! SMLOW_DATA and MHIGH_DATA: two soil moisture wilt, soil moisture referen
! parameters
! Set maximum number of soil-, veg-, and slopetyp in data statement.
! ----------------------------------------------------------------------
INTEGER, PARAMETER :: MAX_SLOPETYP=30,MAX_SOILTYP=30,MAX_VEGTYP=30
LOGICAL :: LOCAL
CHARACTER (LEN=4), INTENT(IN):: LLANDUSE, LSOIL
! Veg parameters
INTEGER, INTENT(IN) :: VEGTYP
INTEGER, INTENT(OUT) :: NROOT
REAL, INTENT(OUT) :: HS,LAI,RSMIN,RGL,SHDFAC,SNUP,Z0BRD, &
CMCMAX,RSMAX,TOPT,ALBBRD
! Soil parameters
INTEGER, INTENT(IN) :: SOILTYP
REAL, INTENT(OUT) :: BEXP,DKSAT,DWSAT,F1,QUARTZ,SMCDRY, &
SMCMAX,SMCREF,SMCWLT,PSISAT
! General parameters
INTEGER, INTENT(IN) :: SLOPETYP,NSOIL
INTEGER :: I
REAL, INTENT(OUT) :: SLOPE,CZIL,SBETA,FXEXP, &
CSOIL,SALP,FRZX,KDT,CFACTR, &
ZBOT,REFKDT,PTU
REAL,DIMENSION(1:NSOIL),INTENT(IN) :: SLDPTH,ZSOIL
REAL,DIMENSION(1:NSOIL),INTENT(OUT):: RTDIS
REAL :: FRZFACT,FRZK,REFDK
! SAVE
! ----------------------------------------------------------------------
!
IF (SOILTYP .gt. SLCATS) THEN
WRITE (*,*) 'Warning: too many input soil types'
STOP 333
END IF
IF (VEGTYP .gt. LUCATS) THEN
WRITE (*,*) 'Warning: too many input landuse types'
STOP 333
END IF
IF (SLOPETYP .gt. SLPCATS) THEN
WRITE (*,*) 'Warning: too many input slope types'
STOP 333
END IF
! ----------------------------------------------------------------------
! SET-UP SOIL PARAMETERS
! ----------------------------------------------------------------------
CSOIL = CSOIL_DATA
BEXP = BB (SOILTYP)
DKSAT = SATDK (SOILTYP)
DWSAT = SATDW (SOILTYP)
F1 = F11 (SOILTYP)
PSISAT = SATPSI (SOILTYP)
QUARTZ = QTZ (SOILTYP)
SMCDRY = DRYSMC (SOILTYP)
SMCMAX = MAXSMC (SOILTYP)
SMCREF = REFSMC (SOILTYP)
SMCWLT = WLTSMC (SOILTYP)
! ----------------------------------------------------------------------
! Set-up universal parameters (not dependent on SOILTYP, VEGTYP or
! SLOPETYP)
! ----------------------------------------------------------------------
ZBOT = ZBOT_DATA
SALP = SALP_DATA
SBETA = SBETA_DATA
REFDK = REFDK_DATA
FRZK = FRZK_DATA
FXEXP = FXEXP_DATA
REFKDT = REFKDT_DATA
PTU = 0. ! (not used yet) to satisify intent(out)
KDT = REFKDT * DKSAT / REFDK
CZIL = CZIL_DATA
SLOPE = SLOPE_DATA (SLOPETYP)
! ----------------------------------------------------------------------
! TO ADJUST FRZK PARAMETER TO ACTUAL SOIL TYPE: FRZK * FRZFACT
! ----------------------------------------------------------------------
FRZFACT = (SMCMAX / SMCREF) * (0.412 / 0.468)
FRZX = FRZK * FRZFACT
! ----------------------------------------------------------------------
! SET-UP VEGETATION PARAMETERS
! ----------------------------------------------------------------------
TOPT = TOPT_DATA
CMCMAX = CMCMAX_DATA
CFACTR = CFACTR_DATA
RSMAX = RSMAX_DATA
NROOT = NROTBL (VEGTYP)
SNUP = SNUPTBL (VEGTYP)
RSMIN = RSTBL (VEGTYP)
RGL = RGLTBL (VEGTYP)
HS = HSTBL (VEGTYP)
LAI = LAITBL (VEGTYP)
IF(LOCAL) THEN
ALBBRD = ALBTBL(VEGTYP)
Z0BRD = Z0TBL(VEGTYP)
SHDFAC = SHDTBL(VEGTYP)
ENDIF
IF (VEGTYP .eq. BARE) SHDFAC = 0.0
IF (NROOT .gt. NSOIL) THEN
WRITE (*,*) 'Warning: too many root layers'
STOP 333
! ----------------------------------------------------------------------
! CALCULATE ROOT DISTRIBUTION. PRESENT VERSION ASSUMES UNIFORM
! DISTRIBUTION BASED ON SOIL LAYER DEPTHS.
! ----------------------------------------------------------------------
END IF
DO I = 1,NROOT
RTDIS (I) = - SLDPTH (I)/ ZSOIL (NROOT)
! ----------------------------------------------------------------------
! SET-UP SLOPE PARAMETER
! ----------------------------------------------------------------------
END DO
! print*,'end of PRMRED'
! print*,'VEGTYP',VEGTYP,'SOILTYP',SOILTYP,'SLOPETYP',SLOPETYP, &
! & 'CFACTR',CFACTR,'CMCMAX',CMCMAX,'RSMAX',RSMAX,'TOPT',TOPT, &
! & 'REFKDT',REFKDT,'KDT',KDT,'SBETA',SBETA, 'SHDFAC',SHDFAC, &
! & 'RSMIN',RSMIN,'RGL',RGL,'HS',HS,'ZBOT',ZBOT,'FRZX',FRZX, &
! & 'PSISAT',PSISAT,'SLOPE',SLOPE,'SNUP',SNUP,'SALP',SALP,'BEXP', &
! & BEXP, &
! & 'DKSAT',DKSAT,'DWSAT',DWSAT, &
! & 'SMCMAX',SMCMAX,'SMCWLT',SMCWLT,'SMCREF',SMCREF,'SMCDRY',SMCDRY, &
! & 'F1',F1,'QUARTZ',QUARTZ,'FXEXP',FXEXP, &
! & 'RTDIS',RTDIS,'SLDPTH',SLDPTH,'ZSOIL',ZSOIL, 'NROOT',NROOT, &
! & 'NSOIL',NSOIL,'Z0',Z0,'CZIL',CZIL,'LAI',LAI, &
! & 'CSOIL',CSOIL,'PTU',PTU, &
! & 'LOCAL', LOCAL
END SUBROUTINE REDPRM
SUBROUTINE ROSR12 (P,A,B,C,D,DELTA,NSOIL) 4
! ----------------------------------------------------------------------
! SUBROUTINE ROSR12
! ----------------------------------------------------------------------
! INVERT (SOLVE) THE TRI-DIAGONAL MATRIX PROBLEM SHOWN BELOW:
! ### ### ### ### ### ###
! #B(1), C(1), 0 , 0 , 0 , . . . , 0 # # # # #
! #A(2), B(2), C(2), 0 , 0 , . . . , 0 # # # # #
! # 0 , A(3), B(3), C(3), 0 , . . . , 0 # # # # D(3) #
! # 0 , 0 , A(4), B(4), C(4), . . . , 0 # # P(4) # # D(4) #
! # 0 , 0 , 0 , A(5), B(5), . . . , 0 # # P(5) # # D(5) #
! # . . # # . # = # . #
! # . . # # . # # . #
! # . . # # . # # . #
! # 0 , . . . , 0 , A(M-2), B(M-2), C(M-2), 0 # #P(M-2)# #D(M-2)#
! # 0 , . . . , 0 , 0 , A(M-1), B(M-1), C(M-1)# #P(M-1)# #D(M-1)#
! # 0 , . . . , 0 , 0 , 0 , A(M) , B(M) # # P(M) # # D(M) #
! ### ### ### ### ### ###
! ----------------------------------------------------------------------
IMPLICIT NONE
INTEGER, INTENT(IN) :: NSOIL
INTEGER :: K, KK
REAL, DIMENSION(1:NSOIL), INTENT(IN):: A, B, D
REAL, DIMENSION(1:NSOIL),INTENT(INOUT):: C,P,DELTA
! ----------------------------------------------------------------------
! INITIALIZE EQN COEF C FOR THE LOWEST SOIL LAYER
! ----------------------------------------------------------------------
C (NSOIL) = 0.0
P (1) = - C (1) / B (1)
! ----------------------------------------------------------------------
! SOLVE THE COEFS FOR THE 1ST SOIL LAYER
! ----------------------------------------------------------------------
! ----------------------------------------------------------------------
! SOLVE THE COEFS FOR SOIL LAYERS 2 THRU NSOIL
! ----------------------------------------------------------------------
DELTA (1) = D (1) / B (1)
DO K = 2,NSOIL
P (K) = - C (K) * ( 1.0 / (B (K) + A (K) * P (K -1)) )
DELTA (K) = (D (K) - A (K)* DELTA (K -1))* (1.0/ (B (K) + A (K)&
* P (K -1)))
END DO
! ----------------------------------------------------------------------
! SET P TO DELTA FOR LOWEST SOIL LAYER
! ----------------------------------------------------------------------
P (NSOIL) = DELTA (NSOIL)
! ----------------------------------------------------------------------
! ADJUST P FOR SOIL LAYERS 2 THRU NSOIL
! ----------------------------------------------------------------------
DO K = 2,NSOIL
KK = NSOIL - K + 1
P (KK) = P (KK) * P (KK +1) + DELTA (KK)
END DO
! ----------------------------------------------------------------------
END SUBROUTINE ROSR12
! ----------------------------------------------------------------------
SUBROUTINE SHFLX (SSOIL,STC,SMC,SMCMAX,NSOIL,T1,DT,YY,ZZ1,ZSOIL, & 4,8
TBOT,ZBOT,SMCWLT,PSISAT,SH2O,BEXP,F1,DF1,ICE, &
QUARTZ,CSOIL)
! ----------------------------------------------------------------------
! SUBROUTINE SHFLX
! ----------------------------------------------------------------------
! UPDATE THE TEMPERATURE STATE OF THE SOIL COLUMN BASED ON THE THERMAL
! DIFFUSION EQUATION AND UPDATE THE FROZEN SOIL MOISTURE CONTENT BASED
! ON THE TEMPERATURE.
! ----------------------------------------------------------------------
IMPLICIT NONE
INTEGER, INTENT(IN) :: ICE, NSOIL
INTEGER :: I
REAL, INTENT(IN) :: BEXP,CSOIL,DF1,DT,F1,PSISAT,QUARTZ, &
SMCMAX, SMCWLT, TBOT,YY, ZBOT,ZZ1
REAL, INTENT(INOUT) :: T1
REAL, INTENT(OUT) :: SSOIL
REAL, DIMENSION(1:NSOIL), INTENT(IN) :: SMC,ZSOIL
REAL, DIMENSION(1:NSOIL), INTENT(INOUT) :: SH2O
REAL, DIMENSION(1:NSOIL), INTENT(INOUT) :: STC
REAL, DIMENSION(1:NSOLD) :: AI, BI, CI, STCF,RHSTS
REAL, PARAMETER :: T0 = 273.15
! ----------------------------------------------------------------------
! HRT ROUTINE CALCS THE RIGHT HAND SIDE OF THE SOIL TEMP DIF EQN
! ----------------------------------------------------------------------
! ----------------------------------------------------------------------
! SEA-ICE CASE
! ----------------------------------------------------------------------
IF (ICE == 1) THEN
CALL HRTICE
(RHSTS,STC,NSOIL,ZSOIL,YY,ZZ1,DF1,AI,BI,CI)
CALL HSTEP
(STCF,STC,RHSTS,DT,NSOIL,AI,BI,CI)
! ----------------------------------------------------------------------
! LAND-MASS CASE
! ----------------------------------------------------------------------
ELSE
CALL HRT
(RHSTS,STC,SMC,SMCMAX,NSOIL,ZSOIL,YY,ZZ1,TBOT, &
ZBOT,PSISAT,SH2O,DT, &
BEXP,F1,DF1,QUARTZ,CSOIL,AI,BI,CI)
CALL HSTEP
(STCF,STC,RHSTS,DT,NSOIL,AI,BI,CI)
END IF
DO I = 1,NSOIL
STC (I) = STCF (I)
END DO
! ----------------------------------------------------------------------
! IN THE NO SNOWPACK CASE (VIA ROUTINE NOPAC BRANCH,) UPDATE THE GRND
! (SKIN) TEMPERATURE HERE IN RESPONSE TO THE UPDATED SOIL TEMPERATURE
! PROFILE ABOVE. (NOTE: INSPECTION OF ROUTINE SNOPAC SHOWS THAT T1
! BELOW IS A DUMMY VARIABLE ONLY, AS SKIN TEMPERATURE IS UPDATED
! DIFFERENTLY IN ROUTINE SNOPAC)
! ----------------------------------------------------------------------
! ----------------------------------------------------------------------
! CALCULATE SURFACE SOIL HEAT FLUX
! ----------------------------------------------------------------------
T1 = (YY + (ZZ1- 1.0) * STC (1)) / ZZ1
SSOIL = DF1 * (STC (1) - T1) / (0.5 * ZSOIL (1))
! ----------------------------------------------------------------------
END SUBROUTINE SHFLX
! ----------------------------------------------------------------------
SUBROUTINE SMFLX (SMC,NSOIL,CMC,DT,PRCP1,ZSOIL, & 6,13
& SH2O,SLOPE,KDT,FRZFACT, &
& SMCMAX,BEXP,SMCWLT,DKSAT,DWSAT, &
& SHDFAC,CMCMAX, &
& RUNOFF1,RUNOFF2,RUNOFF3, &
& EDIR,EC,ET, &
& DRIP)
! ----------------------------------------------------------------------
! SUBROUTINE SMFLX
! ----------------------------------------------------------------------
! CALCULATE SOIL MOISTURE FLUX. THE SOIL MOISTURE CONTENT (SMC - A PER
! UNIT VOLUME MEASUREMENT) IS A DEPENDENT VARIABLE THAT IS UPDATED WITH
! PROGNOSTIC EQNS. THE CANOPY MOISTURE CONTENT (CMC) IS ALSO UPDATED.
! FROZEN GROUND VERSION: NEW STATES ADDED: SH2O, AND FROZEN GROUND
! CORRECTION FACTOR, FRZFACT AND PARAMETER SLOPE.
! ----------------------------------------------------------------------
IMPLICIT NONE
INTEGER, INTENT(IN) :: NSOIL
INTEGER :: I,K
REAL, INTENT(IN) :: BEXP, CMCMAX, DKSAT,DWSAT, DT, EC, EDIR, &
KDT, PRCP1, SHDFAC, SLOPE, SMCMAX, SMCWLT
REAL, INTENT(OUT) :: DRIP, RUNOFF1, RUNOFF2, RUNOFF3
REAL, INTENT(INOUT) :: CMC
REAL, DIMENSION(1:NSOIL), INTENT(IN) :: ET,ZSOIL
REAL, DIMENSION(1:NSOIL), INTENT(INOUT):: SMC, SH2O
REAL, DIMENSION(1:NSOLD) :: AI, BI, CI, STCF,RHSTS, RHSTT, &
SICE, SH2OA, SH2OFG
REAL :: DUMMY, EXCESS,FRZFACT,PCPDRP,RHSCT,TRHSCT
! ----------------------------------------------------------------------
! EXECUTABLE CODE BEGINS HERE.
! ----------------------------------------------------------------------
! ----------------------------------------------------------------------
! COMPUTE THE RIGHT HAND SIDE OF THE CANOPY EQN TERM ( RHSCT )
! ----------------------------------------------------------------------
DUMMY = 0.
! ----------------------------------------------------------------------
! CONVERT RHSCT (A RATE) TO TRHSCT (AN AMOUNT) AND ADD IT TO EXISTING
! CMC. IF RESULTING AMT EXCEEDS MAX CAPACITY, IT BECOMES DRIP AND WILL
! FALL TO THE GRND.
! ----------------------------------------------------------------------
RHSCT = SHDFAC * PRCP1- EC
DRIP = 0.
TRHSCT = DT * RHSCT
EXCESS = CMC + TRHSCT
! ----------------------------------------------------------------------
! PCPDRP IS THE COMBINED PRCP1 AND DRIP (FROM CMC) THAT GOES INTO THE
! SOIL
! ----------------------------------------------------------------------
IF (EXCESS > CMCMAX) DRIP = EXCESS - CMCMAX
PCPDRP = (1. - SHDFAC) * PRCP1+ DRIP / DT
! ----------------------------------------------------------------------
! STORE ICE CONTENT AT EACH SOIL LAYER BEFORE CALLING SRT and SSTEP
!
DO I = 1,NSOIL
SICE (I) = SMC (I) - SH2O (I)
END DO
! ----------------------------------------------------------------------
! CALL SUBROUTINES SRT AND SSTEP TO SOLVE THE SOIL MOISTURE
! TENDENCY EQUATIONS.
! IF THE INFILTRATING PRECIP RATE IS NONTRIVIAL,
! (WE CONSIDER NONTRIVIAL TO BE A PRECIP TOTAL OVER THE TIME STEP
! EXCEEDING ONE ONE-THOUSANDTH OF THE WATER HOLDING CAPACITY OF
! THE FIRST SOIL LAYER)
! THEN CALL THE SRT/SSTEP SUBROUTINE PAIR TWICE IN THE MANNER OF
! TIME SCHEME "F" (IMPLICIT STATE, AVERAGED COEFFICIENT)
! OF SECTION 2 OF KALNAY AND KANAMITSU (1988, MWR, VOL 116,
! PAGES 1945-1958)TO MINIMIZE 2-DELTA-T OSCILLATIONS IN THE
! SOIL MOISTURE VALUE OF THE TOP SOIL LAYER THAT CAN ARISE BECAUSE
! OF THE EXTREME NONLINEAR DEPENDENCE OF THE SOIL HYDRAULIC
! DIFFUSIVITY COEFFICIENT AND THE HYDRAULIC CONDUCTIVITY ON THE
! SOIL MOISTURE STATE
! OTHERWISE CALL THE SRT/SSTEP SUBROUTINE PAIR ONCE IN THE MANNER OF
! TIME SCHEME "D" (IMPLICIT STATE, EXPLICIT COEFFICIENT)
! OF SECTION 2 OF KALNAY AND KANAMITSU
! PCPDRP IS UNITS OF KG/M**2/S OR MM/S, ZSOIL IS NEGATIVE DEPTH IN M
! ----------------------------------------------------------------------
! IF ( PCPDRP .GT. 0.0 ) THEN
! ----------------------------------------------------------------------
! FROZEN GROUND VERSION:
! SMC STATES REPLACED BY SH2O STATES IN SRT SUBR. SH2O & SICE STATES
! INC&UDED IN SSTEP SUBR. FROZEN GROUND CORRECTION FACTOR, FRZFACT
! ADDED. ALL WATER BALANCE CALCULATIONS USING UNFROZEN WATER
! ----------------------------------------------------------------------
IF ( (PCPDRP * DT) > (0.001*1000.0* (- ZSOIL (1))* SMCMAX) ) THEN
CALL SRT
(RHSTT,EDIR,ET,SH2O,SH2O,NSOIL,PCPDRP,ZSOIL, &
DWSAT,DKSAT,SMCMAX,BEXP,RUNOFF1, &
RUNOFF2,DT,SMCWLT,SLOPE,KDT,FRZFACT,SICE,AI,BI,CI)
CALL SSTEP
(SH2OFG,SH2O,DUMMY,RHSTT,RHSCT,DT,NSOIL,SMCMAX, &
CMCMAX,RUNOFF3,ZSOIL,SMC,SICE,AI,BI,CI)
DO K = 1,NSOIL
SH2OA (K) = (SH2O (K) + SH2OFG (K)) * 0.5
END DO
CALL SRT
(RHSTT,EDIR,ET,SH2O,SH2OA,NSOIL,PCPDRP,ZSOIL, &
DWSAT,DKSAT,SMCMAX,BEXP,RUNOFF1, &
RUNOFF2,DT,SMCWLT,SLOPE,KDT,FRZFACT,SICE,AI,BI,CI)
CALL SSTEP
(SH2O,SH2O,CMC,RHSTT,RHSCT,DT,NSOIL,SMCMAX, &
CMCMAX,RUNOFF3,ZSOIL,SMC,SICE,AI,BI,CI)
ELSE
CALL SRT
(RHSTT,EDIR,ET,SH2O,SH2O,NSOIL,PCPDRP,ZSOIL, &
DWSAT,DKSAT,SMCMAX,BEXP,RUNOFF1, &
RUNOFF2,DT,SMCWLT,SLOPE,KDT,FRZFACT,SICE,AI,BI,CI)
CALL SSTEP
(SH2O,SH2O,CMC,RHSTT,RHSCT,DT,NSOIL,SMCMAX, &
CMCMAX,RUNOFF3,ZSOIL,SMC,SICE,AI,BI,CI)
! RUNOF = RUNOFF
END IF
! ----------------------------------------------------------------------
END SUBROUTINE SMFLX
! ----------------------------------------------------------------------
SUBROUTINE SNFRAC (SNEQV,SNUP,SALP,SNOWH,SNCOVR) 1
! ----------------------------------------------------------------------
! SUBROUTINE SNFRAC
! ----------------------------------------------------------------------
! CALCULATE SNOW FRACTION (0 -> 1)
! SNEQV SNOW WATER EQUIVALENT (M)
! SNUP THRESHOLD SNEQV DEPTH ABOVE WHICH SNCOVR=1
! SALP TUNING PARAMETER
! SNCOVR FRACTIONAL SNOW COVER
! ----------------------------------------------------------------------
IMPLICIT NONE
REAL, INTENT(IN) :: SNEQV,SNUP,SALP,SNOWH
REAL, INTENT(OUT) :: SNCOVR
REAL :: RSNOW, Z0N
! ----------------------------------------------------------------------
! SNUP IS VEG-CLASS DEPENDENT SNOWDEPTH THRESHHOLD (SET IN ROUTINE
! REDPRM) ABOVE WHICH SNOCVR=1.
! ----------------------------------------------------------------------
IF (SNEQV < SNUP) THEN
RSNOW = SNEQV / SNUP
SNCOVR = 1. - ( EXP ( - SALP * RSNOW) - RSNOW * EXP ( - SALP))
ELSE
SNCOVR = 1.0
END IF
! FORMULATION OF DICKINSON ET AL. 1986
! Z0N = 0.035
! SNCOVR=SNOWH/(SNOWH + 5*Z0N)
! FORMULATION OF MARSHALL ET AL. 1994
! SNCOVR=SNEQV/(SNEQV + 2*Z0N)
! ----------------------------------------------------------------------
END SUBROUTINE SNFRAC
! ----------------------------------------------------------------------
SUBROUTINE SNKSRC (TSNSR,TAVG,SMC,SH2O,ZSOIL,NSOIL, & 4,2
& SMCMAX,PSISAT,BEXP,DT,K,QTOT)
! ----------------------------------------------------------------------
! SUBROUTINE SNKSRC
! ----------------------------------------------------------------------
! CALCULATE SINK/SOURCE TERM OF THE TERMAL DIFFUSION EQUATION. (SH2O) IS
! AVAILABLE LIQUED WATER.
! ----------------------------------------------------------------------
IMPLICIT NONE
INTEGER, INTENT(IN) :: K,NSOIL
REAL, INTENT(IN) :: BEXP, DT, PSISAT, QTOT, SMC, SMCMAX, &
TAVG
REAL, INTENT(INOUT) :: SH2O
REAL, DIMENSION(1:NSOIL), INTENT(IN):: ZSOIL
REAL :: DF, DZ, DZH, FREE, TSNSR, &
TDN, TM, TUP, TZ, X0, XDN, XH2O, XUP
REAL, PARAMETER :: DH2O = 1.0000E3, HLICE = 3.3350E5, &
T0 = 2.7315E2
IF (K == 1) THEN
DZ = - ZSOIL (1)
ELSE
DZ = ZSOIL (K -1) - ZSOIL (K)
END IF
! ----------------------------------------------------------------------
! VIA FUNCTION FRH2O, COMPUTE POTENTIAL OR 'EQUILIBRIUM' UNFROZEN
! SUPERCOOLED FREE WATER FOR GIVEN SOIL TYPE AND SOIL LAYER TEMPERATURE.
! FUNCTION FRH20 INVOKES EQN (17) FROM V. KOREN ET AL (1999, JGR, VOL.
! 104, PG 19573). (ASIDE: LATTER EQN IN JOURNAL IN CENTIGRADE UNITS.
! ROUTINE FRH2O USE FORM OF EQN IN KELVIN UNITS.)
! ----------------------------------------------------------------------
! FREE = FRH2O(TAVG,SMC,SH2O,SMCMAX,BEXP,PSISAT)
! ----------------------------------------------------------------------
! IN NEXT BLOCK OF CODE, INVOKE EQN 18 OF V. KOREN ET AL (1999, JGR,
! VOL. 104, PG 19573.) THAT IS, FIRST ESTIMATE THE NEW AMOUNTOF LIQUID
! WATER, 'XH2O', IMPLIED BY THE SUM OF (1) THE LIQUID WATER AT THE BEGIN
! OF CURRENT TIME STEP, AND (2) THE FREEZE OF THAW CHANGE IN LIQUID
! WATER IMPLIED BY THE HEAT FLUX 'QTOT' PASSED IN FROM ROUTINE HRT.
! SECOND, DETERMINE IF XH2O NEEDS TO BE BOUNDED BY 'FREE' (EQUIL AMT) OR
! IF 'FREE' NEEDS TO BE BOUNDED BY XH2O.
! ----------------------------------------------------------------------
CALL FRH2O
(FREE,TAVG,SMC,SH2O,SMCMAX,BEXP,PSISAT)
! ----------------------------------------------------------------------
! FIRST, IF FREEZING AND REMAINING LIQUID LESS THAN LOWER BOUND, THEN
! REDUCE EXTENT OF FREEZING, THEREBY LETTING SOME OR ALL OF HEAT FLUX
! QTOT COOL THE SOIL TEMP LATER IN ROUTINE HRT.
! ----------------------------------------------------------------------
XH2O = SH2O + QTOT * DT / (DH2O * HLICE * DZ)
IF ( XH2O < SH2O .AND. XH2O < FREE) THEN
IF ( FREE > SH2O ) THEN
XH2O = SH2O
ELSE
XH2O = FREE
END IF
END IF
! ----------------------------------------------------------------------
! SECOND, IF THAWING AND THE INCREASE IN LIQUID WATER GREATER THAN UPPER
! BOUND, THEN REDUCE EXTENT OF THAW, THEREBY LETTING SOME OR ALL OF HEAT
! FLUX QTOT WARM THE SOIL TEMP LATER IN ROUTINE HRT.
! ----------------------------------------------------------------------
IF ( XH2O > SH2O .AND. XH2O > FREE ) THEN
IF ( FREE < SH2O ) THEN
XH2O = SH2O
ELSE
XH2O = FREE
END IF
END IF
! ----------------------------------------------------------------------
! CALCULATE PHASE-CHANGE HEAT SOURCE/SINK TERM FOR USE IN ROUTINE HRT
! AND UPDATE LIQUID WATER TO REFLCET FINAL FREEZE/THAW INCREMENT.
! ----------------------------------------------------------------------
! SNKSRC = -DH2O*HLICE*DZ*(XH2O-SH2O)/DT
IF (XH2O < 0.) XH2O = 0.
IF (XH2O > SMC) XH2O = SMC
TSNSR = - DH2O * HLICE * DZ * (XH2O - SH2O)/ DT
SH2O = XH2O
! ----------------------------------------------------------------------
END SUBROUTINE SNKSRC
! ----------------------------------------------------------------------
SUBROUTINE SNOPAC (ETP,ETA,PRCP,PRCPF,SNOWNG,SMC,SMCMAX,SMCWLT, & 2,7
SMCREF,SMCDRY,CMC,CMCMAX,NSOIL,DT, &
SBETA,DF1, &
Q2,T1,SFCTMP,T24,TH2,FDOWN,F1,SSOIL,STC,EPSCA,&
SFCPRS,BEXP,PC,RCH,RR,CFACTR,SNCOVR,ESD,SNDENS,&
SNOWH,SH2O,SLOPE,KDT,FRZFACT,PSISAT, &
ZSOIL,DWSAT,DKSAT,TBOT,ZBOT,SHDFAC,RUNOFF1, &
RUNOFF2,RUNOFF3,EDIR,EC,ET,ETT,NROOT,SNOMLT, &
ICE,RTDIS,QUARTZ,FXEXP,CSOIL, &
BETA,DRIP,DEW,FLX1,FLX2,FLX3,ESNOW,ETNS)
! ----------------------------------------------------------------------
! SUBROUTINE SNOPAC
! ----------------------------------------------------------------------
! CALCULATE SOIL MOISTURE AND HEAT FLUX VALUES & UPDATE SOIL MOISTURE
! CONTENT AND SOIL HEAT CONTENT VALUES FOR THE CASE WHEN A SNOW PACK IS
! PRESENT.
! ----------------------------------------------------------------------
IMPLICIT NONE
INTEGER, INTENT(IN) :: ICE, NROOT, NSOIL
INTEGER :: K
LOGICAL, INTENT(IN) :: SNOWNG
REAL, INTENT(IN) :: BEXP,CFACTR, CMCMAX,CSOIL,DF1,DKSAT, &
DT,DWSAT, EPSCA,ETP,FDOWN,F1,FXEXP, &
FRZFACT,KDT,PC, PRCP,PSISAT,Q2,QUARTZ, &
RCH,RR,SBETA,SFCPRS, SFCTMP, SHDFAC, &
SLOPE,SMCDRY,SMCMAX,SMCREF,SMCWLT, T24, &
TBOT,TH2,ZBOT
REAL, INTENT(INOUT) :: CMC, BETA, ESD,FLX2,PRCPF,SNOWH,SNCOVR, &
SNDENS, T1
REAL, INTENT(OUT) :: DEW,DRIP,EC,EDIR, ETNS, ESNOW,ETT, &
FLX1,FLX3, RUNOFF1,RUNOFF2,RUNOFF3, &
SSOIL,SNOMLT
REAL, DIMENSION(1:NSOIL),INTENT(IN) :: RTDIS,ZSOIL
REAL, DIMENSION(1:NSOIL),INTENT(OUT) :: ET
REAL, DIMENSION(1:NSOIL), INTENT(INOUT) :: SMC,SH2O,STC
REAL, DIMENSION(1:NSOIL) :: ET1
REAL :: DENOM,DSOIL,DTOT,EC1,EDIR1,ESDFLX,ETA, &
ETT1, ESNOW1, ESNOW2, ETA1,ETP1,ETP2, &
ETP3, ETNS1, ETANRG, ETAX, EX, FLX3X, &
FRCSNO,FRCSOI, PRCP1, QSAT,RSNOW, SEH, &
SNCOND,SSOIL1, T11,T12, T12A, T12AX, &
T12B, T14, YY, ZZ1
REAL, PARAMETER :: ESDMIN = 1.E-6, LSUBC = 2.501000E+6, &
LSUBS = 2.83E+6, TFREEZ = 273.15, &
SNOEXP = 1.0
! ----------------------------------------------------------------------
! EXECUTABLE CODE BEGINS HERE:
! INITIALIZE EVAP TERMS.
! ----------------------------------------------------------------------
! conversions:
! ESNOW [KG M-2 S-1]
! ESDFLX [KG M-2 S-1] .le. ESNOW
! ESNOW1 [M S-1]
! ESNOW2 [M]
! ETP [KG M-2 S-1]
! ETP1 [M S-1]
! ETP2 [M]
! ----------------------------------------------------------------------
EDIR = 0.
EDIR1 = 0.
EC1 = 0.
EC = 0.
DO K = 1,NSOIL
ET (K) = 0.
ET1 (K) = 0.
END DO
ETT = 0.
ETT1 = 0.
ETNS = 0.
ETNS1 = 0.
ESNOW = 0.
ESNOW1 = 0.
ESNOW2 = 0.
! CONVERT POTENTIAL EVAP (ETP) FROM KG M-2 S-1 TO M S-1 AND THEN TO AN
! AMOUNT (M) GIVEN TIMESTEP (DT) AND CALL IT AN EFFECTIVE SNOWPACK
! REDUCTION AMOUNT, ETP2 (M). THIS IS THE AMOUNT THE SNOWPACK WOULD BE
! REDUCED DUE TO EVAPORATION FROM THE SNOW SFC DURING THE TIMESTEP.
! EVAPORATION WILL PROCEED AT THE POTENTIAL RATE UNLESS THE SNOW DEPTH
! IS LESS THAN THE EXPECTED SNOWPACK REDUCTION.
! IF SEAICE (ICE=1), BETA REMAINS=1.
! ----------------------------------------------------------------------
! PRCP1 = PRCP1*0.001
! change name of PRCP1 to PRCPF
DEW = 0.
PRCP1 = PRCPF *0.001
ETP1 = ETP * 0.001
ESNOW = ETP * SNCOVR
! write(*,*) 'ESNOW,ESDFLX=',ESNOW,ESDFLX
! ESDFLX = ESD *1000./ DT
! IF (ESDFLX .lt. ESNOW) THEN
!ek ESD = 0.
! ESNOW = ESDFLX
! ESD = 0.
! ELSE
ESNOW1 = ESNOW * 0.001
!ek ESD = ESD - ESNOW2
ESNOW2 = ESNOW1 * DT
! ESD = ESD- ESNOW2
! END IF
! ETP2 = ETP * 0.001 * DT
! IF (ICE .NE. 1) THEN
! IF (ESD .LT. ETP2) THEN
! BETA = ESD / ETP2
! ENDIF
! ENDIF
! ----------------------------------------------------------------------
! IF ETP<0 (DOWNWARD) THEN DEWFALL (=FROSTFALL IN THIS CASE).
! ----------------------------------------------------------------------
BETA = 1.0
IF (ETP <= 0.0) THEN
IF(ETP == 0.) BETA = 0.0
DEW = - ETP * 0.001
! ETP1 = 0.0
ELSE
IF (ICE /= 1) THEN
! write(*,*) 'ETP1=',ETP1
IF (SNCOVR < 1.) THEN
CALL EVAPO
(ETA1,SMC,NSOIL,CMC,ETP1,DT,ZSOIL, &
SH2O, &
SMCMAX,BEXP,PC,SMCWLT,DKSAT,DWSAT, &
SMCREF,SHDFAC,CMCMAX, &
SMCDRY,CFACTR, &
EDIR1,EC1,ET1,ETT1,SFCTMP,Q2,NROOT,RTDIS, &
FXEXP)
EDIR1 = EDIR1* (1. - SNCOVR)
EC1 = EC1* (1. - SNCOVR)
DO K = 1,NSOIL
ET1 (K) = ET1 (K)* (1. - SNCOVR)
END DO
ETT1 = ETT1*(1.-SNCOVR)
ETNS1 = EDIR1+ EC1+ ETT1
EDIR = EDIR1*1000.
EC = EC1*1000.
DO K = 1,NSOIL
ET (K) = ET1 (K)*1000.
END DO
ETT = ETT1*1000.
ETNS = ETNS1*1000.
! write(*,*) EDIR*2.5E+9,
! & EC*2.5E+9,
! & ET(1)*2.5E+9,
! & ET(2)*2.5E+9,
! & ET(3)*2.5E+9,
! & ET(4)*2.5E+9,
! & ETT*2.5E+9
! write(*,*) 'SNCOVR=',SNCOVR
ETNS = ETNS1*1000.
! write(*,*) 'ESNOW[W/M2],ETNS[W/M2]=',
! & ESNOW*LSUBS,ETNS*LSUBC
! write(*,*) 'ETP[W/M2],ETANRG=',
! & ETP*LSUBS,ETANRG
! ----------------------------------------------------------------------
! end IF (SNCOVR .lt. 1.)
END IF
! end IF (ICE .ne. 1)
END IF
! end IF (ETP .le. 0.0)
END IF
! ----------------------------------------------------------------------
! COMPUTE TOTAL EVAPORATION, SNOW AND NON-SNOW
! also compute energy units (ETANRG) needed later below
! ----------------------------------------------------------------------
! write(*,*)'ESNOW*LSUBS,ETNS*LSUBC,ETANRG=',
! & ESNOW*LSUBS,ETNS*LSUBC,ETANRG
ETANRG = ESNOW * LSUBS + ETNS * LSUBC
! ----------------------------------------------------------------------
! IF PRECIP IS FALLING, CALCULATE HEAT FLUX FROM SNOW SFC TO NEWLY
! ACCUMULATING PRECIP. NOTE THAT THIS REFLECTS THE FLUX APPROPRIATE FOR
! THE NOT-YET-UPDATED SKIN TEMPERATURE (T1). ASSUMES TEMPERATURE OF THE
! SNOWFALL STRIKING THE GROUND IS =SFCTMP (LOWEST MODEL LEVEL AIR TEMP).
! ----------------------------------------------------------------------
FLX1 = 0.0
IF (SNOWNG) THEN
FLX1 = CPICE * PRCP * (T1- SFCTMP)
ELSE
IF (PRCP > 0.0) FLX1 = CPH2O * PRCP * (T1- SFCTMP)
! ----------------------------------------------------------------------
! CALCULATE AN 'EFFECTIVE SNOW-GRND SFC TEMP' (T12) BASED ON HEAT FLUXES
! BETWEEN THE SNOW PACK AND THE SOIL AND ON NET RADIATION.
! INCLUDE FLX1 (PRECIP-SNOW SFC) AND FLX2 (FREEZING RAIN LATENT HEAT)
! FLUXES. FLX1 FROM ABOVE, FLX2 BROUGHT IN VIA COMMOM BLOCK RITE.
! FLX2 REFLECTS FREEZING RAIN LATENT HEAT FLUX USING T1 CALCULATED IN
! PENMAN.
! ----------------------------------------------------------------------
END IF
DSOIL = - (0.5 * ZSOIL (1))
DTOT = SNOWH + DSOIL
!ek T12A = ( (FDOWN-FLX1-FLX2-SIGMA*T24)/RCH
!ek & + TH2 - SFCTMP - BETA*EPSCA ) / RR
!ek T12AX = ( (FDOWN-FLX1-FLX2-SIGMA*T24)/RCH
!ek & + TH2 - SFCTMP - ETANRG/RCH ) / RR
DENOM = 1.0+ DF1 / (DTOT * RR * RCH)
! write(*,*) 'T12A,T12AX=',T12A,T12AX
T12A = ( (FDOWN - FLX1- FLX2- SIGMA * T24)/ RCH &
& + TH2- SFCTMP - ETANRG / RCH ) / RR
T12B = DF1 * STC (1) / (DTOT * RR * RCH)
! ----------------------------------------------------------------------
! IF THE 'EFFECTIVE SNOW-GRND SFC TEMP' IS AT OR BELOW FREEZING, NO SNOW
! MELT WILL OCCUR. SET THE SKIN TEMP TO THIS EFFECTIVE TEMP. REDUCE
! (BY SUBLIMINATION ) OR INCREASE (BY FROST) THE DEPTH OF THE SNOWPACK,
! DEPENDING ON SIGN OF ETP.
! UPDATE SOIL HEAT FLUX (SSOIL) USING NEW SKIN TEMPERATURE (T1)
! SINCE NO SNOWMELT, SET ACCUMULATED SNOWMELT TO ZERO, SET 'EFFECTIVE'
! PRECIP FROM SNOWMELT TO ZERO, SET PHASE-CHANGE HEAT FLUX FROM SNOWMELT
! TO ZERO.
! ----------------------------------------------------------------------
! SUB-FREEZING BLOCK
! ----------------------------------------------------------------------
T12 = (SFCTMP + T12A + T12B) / DENOM
IF (T12 <= TFREEZ) THEN
T1 = T12
SSOIL = DF1 * (T1- STC (1)) / DTOT
! ESD = MAX (0.0, ESD- ETP2)
ESD = MAX(0.0, ESD-ESNOW2)
FLX3 = 0.0
EX = 0.0
SNOMLT = 0.0
! ----------------------------------------------------------------------
! IF THE 'EFFECTIVE SNOW-GRND SFC TEMP' IS ABOVE FREEZING, SNOW MELT
! WILL OCCUR. CALL THE SNOW MELT RATE,EX AND AMT, SNOMLT. REVISE THE
! EFFECTIVE SNOW DEPTH. REVISE THE SKIN TEMP BECAUSE IT WOULD HAVE CHGD
! DUE TO THE LATENT HEAT RELEASED BY THE MELTING. CALC THE LATENT HEAT
! RELEASED, FLX3. SET THE EFFECTIVE PRECIP, PRCP1 TO THE SNOW MELT RATE,
! EX FOR USE IN SMFLX. ADJUSTMENT TO T1 TO ACCOUNT FOR SNOW PATCHES.
! CALCULATE QSAT VALID AT FREEZING POINT. NOTE THAT ESAT (SATURATION
! VAPOR PRESSURE) VALUE OF 6.11E+2 USED HERE IS THAT VALID AT FRZZING
! POINT. NOTE THAT ETP FROM CALL PENMAN IN SFLX IS IGNORED HERE IN
! FAVOR OF BULK ETP OVER 'OPEN WATER' AT FREEZING TEMP.
! UPDATE SOIL HEAT FLUX (S) USING NEW SKIN TEMPERATURE (T1)
! ----------------------------------------------------------------------
! ABOVE FREEZING BLOCK
! ----------------------------------------------------------------------
!ek2 T1 = TFREEZ * SNCOVR + T12 * (1.0 - SNCOVR)
ELSE
!ek QSAT = (0.622*6.11E2)/(SFCPRS-0.378*6.11E2)
!ek ETP = RCH*(QSAT-Q2)/CP
!ek ETP2 = ETP*0.001*DT
T1 = TFREEZ * SNCOVR ** SNOEXP + T12 * (1.0- SNCOVR ** SNOEXP)
BETA = 1.0
! ----------------------------------------------------------------------
! IF POTENTIAL EVAP (SUBLIMATION) GREATER THAN DEPTH OF SNOWPACK.
! BETA<1
! SNOWPACK HAS SUBLIMATED AWAY, SET DEPTH TO ZERO.
! ----------------------------------------------------------------------
SSOIL = DF1 * (T1- STC (1)) / DTOT
! IF (ESD .le. ETP2) THEN
! BETA = ESD / ETP2
IF (ESD <= ESNOW2) THEN
ESD = 0.0
EX = 0.0
SNOMLT = 0.0
! ----------------------------------------------------------------------
! POTENTIAL EVAP (SUBLIMATION) LESS THAN DEPTH OF SNOWPACK, RETAIN
! BETA=1.
! SNOWPACK (ESD) REDUCED BY POTENTIAL EVAP RATE
! ETP3 (CONVERT TO FLUX)
! ----------------------------------------------------------------------
ELSE
! ESD = ESD- ETP2
ESD = ESD-ESNOW2
ETP3 = ETP * LSUBC
! WRITE (*,*) 'SNCOVR=',SNCOVR
! WRITE (*,*) 'ETP3,ETANRG=',ETP3,ETANRG,'ETP',ETP,'LSUBC',LSUBC
SEH = RCH * (T1- TH2)
T14 = T1* T1
!ek FLX3 = FDOWN - FLX1 - FLX2 - SIGMA*T14 - SSOIL - SEH - ETP3
!ek FLX3X = FDOWN - FLX1 - FLX2 - SIGMA*T14 - SSOIL - SEH - ETANRG
T14 = T14* T14
FLX3 = FDOWN - FLX1- FLX2- SIGMA * T14- SSOIL - SEH - ETANRG
! WRITE (*,*) 'FLX3,FLX3X=',FLX3,FLX3X
IF (FLX3 <= 0.0) FLX3 = 0.0
! ----------------------------------------------------------------------
! SNOWMELT REDUCTION DEPENDING ON SNOW COVER
! IF SNOW COVER LESS THAN 5% NO SNOWMELT REDUCTION
! ***NOTE: DOES 'IF' BELOW FAIL TO MATCH THE MELT WATER WITH THE MELT
! ENERGY?
! ----------------------------------------------------------------------
EX = FLX3*0.001/ LSUBF
! IF (SNCOVR .gt. 0.05) EX = EX * SNCOVR
! ----------------------------------------------------------------------
! ESDMIN REPRESENTS A SNOWPACK DEPTH THRESHOLD VALUE BELOW WHICH WE
! CHOOSE NOT TO RETAIN ANY SNOWPACK, AND INSTEAD INCLUDE IT IN SNOWMELT.
! ----------------------------------------------------------------------
SNOMLT = EX * DT
IF (ESD- SNOMLT >= ESDMIN) THEN
ESD = ESD- SNOMLT
! ----------------------------------------------------------------------
! SNOWMELT EXCEEDS SNOW DEPTH
! ----------------------------------------------------------------------
ELSE
EX = ESD / DT
FLX3 = EX *1000.0* LSUBF
SNOMLT = ESD
ESD = 0.0
! ----------------------------------------------------------------------
! END OF 'ESD .LE. ETP2' IF-BLOCK
! ----------------------------------------------------------------------
END IF
END IF
! ----------------------------------------------------------------------
! END OF 'T12 .LE. TFREEZ' IF-BLOCK
! ----------------------------------------------------------------------
PRCP1 = PRCP1+ EX
! ----------------------------------------------------------------------
! FINAL BETA NOW IN HAND, SO COMPUTE EVAPORATION. EVAP EQUALS ETP
! UNLESS BETA<1.
! ----------------------------------------------------------------------
!ek ETA = BETA*ETP
! write(*,*) 'ETA,ETAX,ETAX/ETA=',ETA,ETAX,ETAX/ETA
! IF (ETAX/ETA .GE. 1.0) THEN
! write(*,*) '*********************'
! write(*,*) '*********************'
! write(*,*) '*********************'
! write(*,*) 'ETAX/ETA .GE. 1.0 !!!'
! write(*,*) '*********************'
! write(*,*) '*********************'
! write(*,*) '*********************'
! ENDIF
! ----------------------------------------------------------------------
! SET THE EFFECTIVE POTNL EVAPOTRANSP (ETP1) TO ZERO SINCE THIS IS SNOW
! CASE, SO SURFACE EVAP NOT CALCULATED FROM EDIR, EC, OR ETT IN SMFLX
! (BELOW).
! IF SEAICE (ICE=1) SKIP CALL TO SMFLX.
! SMFLX RETURNS UPDATED SOIL MOISTURE VALUES. IN THIS, THE SNOW PACK
! CASE, ETA1 IS NOT USED IN CALCULATION OF EVAP.
! ----------------------------------------------------------------------
! ETP1 = 0.0
END IF
IF (ICE /= 1) THEN
CALL SMFLX
(SMC,NSOIL,CMC,DT,PRCP1,ZSOIL, &
SH2O,SLOPE,KDT,FRZFACT, &
SMCMAX,BEXP,SMCWLT,DKSAT,DWSAT, &
SHDFAC,CMCMAX, &
RUNOFF1,RUNOFF2,RUNOFF3, &
EDIR1,EC1,ET1, &
DRIP)
! ----------------------------------------------------------------------
! BEFORE CALL SHFLX IN THIS SNOWPACK CASE, SET ZZ1 AND YY ARGUMENTS TO
! SPECIAL VALUES THAT ENSURE THAT GROUND HEAT FLUX CALCULATED IN SHFLX
! MATCHES THAT ALREADY COMPUTER FOR BELOW THE SNOWPACK, THUS THE SFC
! HEAT FLUX TO BE COMPUTED IN SHFLX WILL EFFECTIVELY BE THE FLUX AT THE
! SNOW TOP SURFACE. T11 IS A DUMMY ARGUEMENT SO WE WILL NOT USE THE
! SKIN TEMP VALUE AS REVISED BY SHFLX.
! ----------------------------------------------------------------------
END IF
ZZ1 = 1.0
YY = STC (1) -0.5* SSOIL * ZSOIL (1)* ZZ1/ DF1
! ----------------------------------------------------------------------
! SHFLX WILL CALC/UPDATE THE SOIL TEMPS. NOTE: THE SUB-SFC HEAT FLUX
! (SSOIL1) AND THE SKIN TEMP (T11) OUTPUT FROM THIS SHFLX CALL ARE NOT
! USED IN ANY SUBSEQUENT CALCULATIONS. RATHER, THEY ARE DUMMY VARIABLES
! HERE IN THE SNOPAC CASE, SINCE THE SKIN TEMP AND SUB-SFC HEAT FLUX ARE
! UPDATED INSTEAD NEAR THE BEGINNING OF THE CALL TO SNOPAC.
! ----------------------------------------------------------------------
T11 = T1
CALL SHFLX
(SSOIL1,STC,SMC,SMCMAX,NSOIL,T11,DT,YY,ZZ1,ZSOIL, &
TBOT,ZBOT,SMCWLT,PSISAT,SH2O,BEXP,F1,DF1,ICE, &
QUARTZ,CSOIL)
! ----------------------------------------------------------------------
! SNOW DEPTH AND DENSITY ADJUSTMENT BASED ON SNOW COMPACTION. YY IS
! ASSUMED TO BE THE SOIL TEMPERTURE AT THE TOP OF THE SOIL COLUMN.
! ----------------------------------------------------------------------
IF (ESD > 0.) THEN
CALL SNOWPACK
(ESD,DT,SNOWH,SNDENS,T1,YY)
ELSE
ESD = 0.
SNOWH = 0.
SNDENS = 0.
SNCOND = 1.
END IF
! ----------------------------------------------------------------------
END SUBROUTINE SNOPAC
! ----------------------------------------------------------------------
SUBROUTINE SNOWPACK (ESD,DTSEC,SNOWH,SNDENS,TSNOW,TSOIL) 2
! ----------------------------------------------------------------------
! SUBROUTINE SNOWPACK
! ----------------------------------------------------------------------
! CALCULATE COMPACTION OF SNOWPACK UNDER CONDITIONS OF INCREASING SNOW
! DENSITY, AS OBTAINED FROM AN APPROXIMATE SOLUTION OF E. ANDERSON'S
! DIFFERENTIAL EQUATION (3.29), NOAA TECHNICAL REPORT NWS 19, BY VICTOR
! KOREN, 03/25/95.
! ----------------------------------------------------------------------
! ESD WATER EQUIVALENT OF SNOW (M)
! DTSEC TIME STEP (SEC)
! SNOWH SNOW DEPTH (M)
! SNDENS SNOW DENSITY (G/CM3=DIMENSIONLESS FRACTION OF H2O DENSITY)
! TSNOW SNOW SURFACE TEMPERATURE (K)
! TSOIL SOIL SURFACE TEMPERATURE (K)
! SUBROUTINE WILL RETURN NEW VALUES OF SNOWH AND SNDENS
! ----------------------------------------------------------------------
IMPLICIT NONE
INTEGER :: IPOL, J
REAL, INTENT(IN) :: ESD, DTSEC,TSNOW,TSOIL
REAL, INTENT(INOUT) :: SNOWH, SNDENS
REAL :: BFAC,DSX,DTHR,DW,SNOWHC,PEXP, &
TAVGC,TSNOWC,TSOILC,ESDC,ESDCX
REAL, PARAMETER :: C1 = 0.01, C2 = 21.0, G = 9.81, &
KN = 4000.0
! ----------------------------------------------------------------------
! CONVERSION INTO SIMULATION UNITS
! ----------------------------------------------------------------------
SNOWHC = SNOWH *100.
ESDC = ESD *100.
DTHR = DTSEC /3600.
TSNOWC = TSNOW -273.15
TSOILC = TSOIL -273.15
! ----------------------------------------------------------------------
! CALCULATING OF AVERAGE TEMPERATURE OF SNOW PACK
! ----------------------------------------------------------------------
! ----------------------------------------------------------------------
! CALCULATING OF SNOW DEPTH AND DENSITY AS A RESULT OF COMPACTION
! SNDENS=DS0*(EXP(BFAC*ESD)-1.)/(BFAC*ESD)
! BFAC=DTHR*C1*EXP(0.08*TAVGC-C2*DS0)
! NOTE: BFAC*ESD IN SNDENS EQN ABOVE HAS TO BE CAREFULLY TREATED
! NUMERICALLY BELOW:
! C1 IS THE FRACTIONAL INCREASE IN DENSITY (1/(CM*HR))
! C2 IS A CONSTANT (CM3/G) KOJIMA ESTIMATED AS 21 CMS/G
! ----------------------------------------------------------------------
TAVGC = 0.5* (TSNOWC + TSOILC)
IF (ESDC > 1.E-2) THEN
ESDCX = ESDC
ELSE
ESDCX = 1.E-2
END IF
! DSX = SNDENS*((DEXP(BFAC*ESDC)-1.)/(BFAC*ESDC))
! ----------------------------------------------------------------------
! THE FUNCTION OF THE FORM (e**x-1)/x IMBEDDED IN ABOVE EXPRESSION
! FOR DSX WAS CAUSING NUMERICAL DIFFICULTIES WHEN THE DENOMINATOR "x"
! (I.E. BFAC*ESDC) BECAME ZERO OR APPROACHED ZERO (DESPITE THE FACT THAT
! THE ANALYTICAL FUNCTION (e**x-1)/x HAS A WELL DEFINED LIMIT AS
! "x" APPROACHES ZERO), HENCE BELOW WE REPLACE THE (e**x-1)/x
! EXPRESSION WITH AN EQUIVALENT, NUMERICALLY WELL-BEHAVED
! POLYNOMIAL EXPANSION.
! NUMBER OF TERMS OF POLYNOMIAL EXPANSION, AND HENCE ITS ACCURACY,
! IS GOVERNED BY ITERATION LIMIT "IPOL".
! IPOL GREATER THAN 9 ONLY MAKES A DIFFERENCE ON DOUBLE
! PRECISION (RELATIVE ERRORS GIVEN IN PERCENT %).
! IPOL=9, FOR REL.ERROR <~ 1.6 E-6 % (8 SIGNIFICANT DIGITS)
! IPOL=8, FOR REL.ERROR <~ 1.8 E-5 % (7 SIGNIFICANT DIGITS)
! IPOL=7, FOR REL.ERROR <~ 1.8 E-4 % ...
! ----------------------------------------------------------------------
BFAC = DTHR * C1* EXP (0.08* TAVGC - C2* SNDENS)
IPOL = 4
PEXP = 0.
! PEXP = (1. + PEXP)*BFAC*ESDC/REAL(J+1)
DO J = IPOL,1, -1
PEXP = (1. + PEXP)* BFAC * ESDCX / REAL (J +1)
END DO
PEXP = PEXP + 1.
! ----------------------------------------------------------------------
! ABOVE LINE ENDS POLYNOMIAL SUBSTITUTION
! ----------------------------------------------------------------------
! END OF KOREAN FORMULATION
! BASE FORMULATION (COGLEY ET AL., 1990)
! CONVERT DENSITY FROM G/CM3 TO KG/M3
! DSM=SNDENS*1000.0
! DSX=DSM+DTSEC*0.5*DSM*G*ESD/
! & (1E7*EXP(-0.02*DSM+KN/(TAVGC+273.16)-14.643))
! & CONVERT DENSITY FROM KG/M3 TO G/CM3
! DSX=DSX/1000.0
! END OF COGLEY ET AL. FORMULATION
! ----------------------------------------------------------------------
! SET UPPER/LOWER LIMIT ON SNOW DENSITY
! ----------------------------------------------------------------------
DSX = SNDENS * (PEXP)
IF (DSX > 0.40) DSX = 0.40
IF (DSX < 0.05) DSX = 0.05
! ----------------------------------------------------------------------
! UPDATE OF SNOW DEPTH AND DENSITY DEPENDING ON LIQUID WATER DURING
! SNOWMELT. ASSUMED THAT 13% OF LIQUID WATER CAN BE STORED IN SNOW PER
! DAY DURING SNOWMELT TILL SNOW DENSITY 0.40.
! ----------------------------------------------------------------------
SNDENS = DSX
IF (TSNOWC >= 0.) THEN
DW = 0.13* DTHR /24.
SNDENS = SNDENS * (1. - DW) + DW
IF (SNDENS >= 0.40) SNDENS = 0.40
! ----------------------------------------------------------------------
! CALCULATE SNOW DEPTH (CM) FROM SNOW WATER EQUIVALENT AND SNOW DENSITY.
! CHANGE SNOW DEPTH UNITS TO METERS
! ----------------------------------------------------------------------
END IF
SNOWHC = ESDC / SNDENS
SNOWH = SNOWHC *0.01
! ----------------------------------------------------------------------
END SUBROUTINE SNOWPACK
! ----------------------------------------------------------------------
SUBROUTINE SNOWZ0 (SNCOVR,Z0, Z0BRD) 1
! ----------------------------------------------------------------------
! SUBROUTINE SNOWZ0
! ----------------------------------------------------------------------
! CALCULATE TOTAL ROUGHNESS LENGTH OVER SNOW
! SNCOVR FRACTIONAL SNOW COVER
! Z0 ROUGHNESS LENGTH (m)
! Z0S SNOW ROUGHNESS LENGTH:=0.001 (m)
! ----------------------------------------------------------------------
IMPLICIT NONE
REAL, INTENT(IN) :: SNCOVR, Z0BRD
REAL, INTENT(OUT) :: Z0
REAL, PARAMETER :: Z0S=0.001
! CURRENT NOAH LSM CONDITION - MBEK, 09-OCT-2001
! Z0S = Z0BRD
Z0 = (1.- SNCOVR)* Z0BRD + SNCOVR * Z0S
! ----------------------------------------------------------------------
END SUBROUTINE SNOWZ0
! ----------------------------------------------------------------------
SUBROUTINE SNOW_NEW (TEMP,NEWSN,SNOWH,SNDENS) 2
! ----------------------------------------------------------------------
! SUBROUTINE SNOW_NEW
! ----------------------------------------------------------------------
! CALCULATE SNOW DEPTH AND DENSITITY TO ACCOUNT FOR THE NEW SNOWFALL.
! NEW VALUES OF SNOW DEPTH & DENSITY RETURNED.
! TEMP AIR TEMPERATURE (K)
! NEWSN NEW SNOWFALL (M)
! SNOWH SNOW DEPTH (M)
! SNDENS SNOW DENSITY (G/CM3=DIMENSIONLESS FRACTION OF H2O DENSITY)
! ----------------------------------------------------------------------
IMPLICIT NONE
REAL, INTENT(IN) :: NEWSN, TEMP
REAL, INTENT(INOUT) :: SNDENS, SNOWH
REAL :: DSNEW, HNEWC, SNOWHC,NEWSNC,TEMPC
! ----------------------------------------------------------------------
! CONVERSION INTO SIMULATION UNITS
! ----------------------------------------------------------------------
SNOWHC = SNOWH *100.
NEWSNC = NEWSN *100.
! ----------------------------------------------------------------------
! CALCULATING NEW SNOWFALL DENSITY DEPENDING ON TEMPERATURE
! EQUATION FROM GOTTLIB L. 'A GENERAL RUNOFF MODEL FOR SNOWCOVERED
! AND GLACIERIZED BASIN', 6TH NORDIC HYDROLOGICAL CONFERENCE,
! VEMADOLEN, SWEDEN, 1980, 172-177PP.
!-----------------------------------------------------------------------
TEMPC = TEMP -273.15
IF (TEMPC <= -15.) THEN
DSNEW = 0.05
ELSE
DSNEW = 0.05+0.0017* (TEMPC +15.)**1.5
END IF
! ----------------------------------------------------------------------
! ADJUSTMENT OF SNOW DENSITY DEPENDING ON NEW SNOWFALL
! ----------------------------------------------------------------------
HNEWC = NEWSNC / DSNEW
SNDENS = (SNOWHC * SNDENS + HNEWC * DSNEW)/ (SNOWHC + HNEWC)
SNOWHC = SNOWHC + HNEWC
SNOWH = SNOWHC *0.01
! ----------------------------------------------------------------------
END SUBROUTINE SNOW_NEW
! ----------------------------------------------------------------------
SUBROUTINE SRT (RHSTT,EDIR,ET,SH2O,SH2OA,NSOIL,PCPDRP, & 6,8
ZSOIL,DWSAT,DKSAT,SMCMAX,BEXP,RUNOFF1, &
RUNOFF2,DT,SMCWLT,SLOPE,KDT,FRZX,SICE,AI,BI,CI)
! ----------------------------------------------------------------------
! SUBROUTINE SRT
! ----------------------------------------------------------------------
! CALCULATE THE RIGHT HAND SIDE OF THE TIME TENDENCY TERM OF THE SOIL
! WATER DIFFUSION EQUATION. ALSO TO COMPUTE ( PREPARE ) THE MATRIX
! COEFFICIENTS FOR THE TRI-DIAGONAL MATRIX OF THE IMPLICIT TIME SCHEME.
! ----------------------------------------------------------------------
IMPLICIT NONE
INTEGER, INTENT(IN) :: NSOIL
INTEGER :: IALP1, IOHINF, J, JJ, K, KS
REAL, INTENT(IN) :: BEXP, DKSAT, DT, DWSAT, EDIR, FRZX, &
KDT, PCPDRP, SLOPE, SMCMAX, SMCWLT
REAL, INTENT(OUT) :: RUNOFF1, RUNOFF2
REAL, DIMENSION(1:NSOIL), INTENT(IN) :: ET, SH2O, SH2OA, SICE, &
ZSOIL
REAL, DIMENSION(1:NSOIL), INTENT(OUT) :: RHSTT
REAL, DIMENSION(1:NSOLD), INTENT(OUT) :: AI, BI, CI
REAL, DIMENSION(1:NSOLD) :: DMAX
REAL :: ACRT, DD, DDT, DDZ, DDZ2, DENOM, &
DENOM2,DICE, DSMDZ, DSMDZ2, DT1, &
FCR,INFMAX,MXSMC,MXSMC2,NUMER,PDDUM, &
PX, SICEMAX,SLOPX, SMCAV, SSTT, &
SUM, VAL, WCND, WCND2, WDF, WDF2
INTEGER, PARAMETER :: CVFRZ = 3
! ----------------------------------------------------------------------
! FROZEN GROUND VERSION:
! REFERENCE FROZEN GROUND PARAMETER, CVFRZ, IS A SHAPE PARAMETER OF
! AREAL DISTRIBUTION FUNCTION OF SOIL ICE CONTENT WHICH EQUALS 1/CV.
! CV IS A COEFFICIENT OF SPATIAL VARIATION OF SOIL ICE CONTENT. BASED
! ON FIELD DATA CV DEPENDS ON AREAL MEAN OF FROZEN DEPTH, AND IT CLOSE
! TO CONSTANT = 0.6 IF AREAL MEAN FROZEN DEPTH IS ABOVE 20 CM. THAT IS
! WHY PARAMETER CVFRZ = 3 (INT{1/0.6*0.6}).
! CURRENT LOGIC DOESN'T ALLOW CVFRZ BE BIGGER THAN 3
! ----------------------------------------------------------------------
! ----------------------------------------------------------------------
! DETERMINE RAINFALL INFILTRATION RATE AND RUNOFF. INCLUDE THE
! INFILTRATION FORMULE FROM SCHAAKE AND KOREN MODEL.
! MODIFIED BY Q DUAN
! ----------------------------------------------------------------------
! ----------------------------------------------------------------------
! LET SICEMAX BE THE GREATEST, IF ANY, FROZEN WATER CONTENT WITHIN SOIL
! LAYERS.
! ----------------------------------------------------------------------
IOHINF = 1
SICEMAX = 0.0
DO KS = 1,NSOIL
IF (SICE (KS) > SICEMAX) SICEMAX = SICE (KS)
! ----------------------------------------------------------------------
! DETERMINE RAINFALL INFILTRATION RATE AND RUNOFF
! ----------------------------------------------------------------------
END DO
PDDUM = PCPDRP
RUNOFF1 = 0.0
! ----------------------------------------------------------------------
! MODIFIED BY Q. DUAN, 5/16/94
! ----------------------------------------------------------------------
! IF (IOHINF == 1) THEN
IF (PCPDRP /= 0.0) THEN
DT1 = DT /86400.
SMCAV = SMCMAX - SMCWLT
! ----------------------------------------------------------------------
! FROZEN GROUND VERSION:
! ----------------------------------------------------------------------
DMAX (1)= - ZSOIL (1)* SMCAV
DICE = - ZSOIL (1) * SICE (1)
DMAX (1)= DMAX (1)* (1.0- (SH2OA (1) + SICE (1) - SMCWLT)/ &
SMCAV)
DD = DMAX (1)
! ----------------------------------------------------------------------
! FROZEN GROUND VERSION:
! ----------------------------------------------------------------------
DO KS = 2,NSOIL
DICE = DICE+ ( ZSOIL (KS -1) - ZSOIL (KS) ) * SICE (KS)
DMAX (KS) = (ZSOIL (KS -1) - ZSOIL (KS))* SMCAV
DMAX (KS) = DMAX (KS)* (1.0- (SH2OA (KS) + SICE (KS) &
- SMCWLT)/ SMCAV)
DD = DD+ DMAX (KS)
! ----------------------------------------------------------------------
! VAL = (1.-EXP(-KDT*SQRT(DT1)))
! IN BELOW, REMOVE THE SQRT IN ABOVE
! ----------------------------------------------------------------------
END DO
VAL = (1. - EXP ( - KDT * DT1))
DDT = DD * VAL
PX = PCPDRP * DT
IF (PX < 0.0) PX = 0.0
! ----------------------------------------------------------------------
! FROZEN GROUND VERSION:
! REDUCTION OF INFILTRATION BASED ON FROZEN GROUND PARAMETERS
! ----------------------------------------------------------------------
INFMAX = (PX * (DDT / (PX + DDT)))/ DT
FCR = 1.
IF (DICE > 1.E-2) THEN
ACRT = CVFRZ * FRZX / DICE
SUM = 1.
IALP1 = CVFRZ - 1
DO J = 1,IALP1
K = 1
DO JJ = J +1,IALP1
K = K * JJ
END DO
SUM = SUM + (ACRT ** ( CVFRZ - J)) / FLOAT (K)
END DO
FCR = 1. - EXP ( - ACRT) * SUM
END IF
! ----------------------------------------------------------------------
! CORRECTION OF INFILTRATION LIMITATION:
! IF INFMAX .LE. HYDROLIC CONDUCTIVITY ASSIGN INFMAX THE VALUE OF
! HYDROLIC CONDUCTIVITY
! ----------------------------------------------------------------------
! MXSMC = MAX ( SH2OA(1), SH2OA(2) )
INFMAX = INFMAX * FCR
MXSMC = SH2OA (1)
CALL WDFCND
(WDF,WCND,MXSMC,SMCMAX,BEXP,DKSAT,DWSAT, &
SICEMAX)
INFMAX = MAX (INFMAX,WCND)
INFMAX = MIN (INFMAX,PX)
IF (PCPDRP > INFMAX) THEN
RUNOFF1 = PCPDRP - INFMAX
PDDUM = INFMAX
END IF
! ----------------------------------------------------------------------
! TO AVOID SPURIOUS DRAINAGE BEHAVIOR, 'UPSTREAM DIFFERENCING' IN LINE
! BELOW REPLACED WITH NEW APPROACH IN 2ND LINE:
! 'MXSMC = MAX(SH2OA(1), SH2OA(2))'
! ----------------------------------------------------------------------
END IF
MXSMC = SH2OA (1)
CALL WDFCND
(WDF,WCND,MXSMC,SMCMAX,BEXP,DKSAT,DWSAT, &
SICEMAX)
! ----------------------------------------------------------------------
! CALC THE MATRIX COEFFICIENTS AI, BI, AND CI FOR THE TOP LAYER
! ----------------------------------------------------------------------
DDZ = 1. / ( - .5 * ZSOIL (2) )
AI (1) = 0.0
BI (1) = WDF * DDZ / ( - ZSOIL (1) )
! ----------------------------------------------------------------------
! CALC RHSTT FOR THE TOP LAYER AFTER CALC'NG THE VERTICAL SOIL MOISTURE
! GRADIENT BTWN THE TOP AND NEXT TO TOP LAYERS.
! ----------------------------------------------------------------------
CI (1) = - BI (1)
DSMDZ = ( SH2O (1) - SH2O (2) ) / ( - .5 * ZSOIL (2) )
RHSTT (1) = (WDF * DSMDZ + WCND- PDDUM + EDIR + ET (1))/ ZSOIL (1)
! ----------------------------------------------------------------------
! INITIALIZE DDZ2
! ----------------------------------------------------------------------
SSTT = WDF * DSMDZ + WCND+ EDIR + ET (1)
! ----------------------------------------------------------------------
! LOOP THRU THE REMAINING SOIL LAYERS, REPEATING THE ABV PROCESS
! ----------------------------------------------------------------------
DDZ2 = 0.0
DO K = 2,NSOIL
DENOM2 = (ZSOIL (K -1) - ZSOIL (K))
IF (K /= NSOIL) THEN
! ----------------------------------------------------------------------
! AGAIN, TO AVOID SPURIOUS DRAINAGE BEHAVIOR, 'UPSTREAM DIFFERENCING' IN
! LINE BELOW REPLACED WITH NEW APPROACH IN 2ND LINE:
! 'MXSMC2 = MAX (SH2OA(K), SH2OA(K+1))'
! ----------------------------------------------------------------------
SLOPX = 1.
MXSMC2 = SH2OA (K)
CALL WDFCND
(WDF2,WCND2,MXSMC2,SMCMAX,BEXP,DKSAT,DWSAT, &
SICEMAX)
! -----------------------------------------------------------------------
! CALC SOME PARTIAL PRODUCTS FOR LATER USE IN CALC'NG RHSTT
! ----------------------------------------------------------------------
DENOM = (ZSOIL (K -1) - ZSOIL (K +1))
! ----------------------------------------------------------------------
! CALC THE MATRIX COEF, CI, AFTER CALC'NG ITS PARTIAL PRODUCT
! ----------------------------------------------------------------------
DSMDZ2 = (SH2O (K) - SH2O (K +1)) / (DENOM * 0.5)
DDZ2 = 2.0 / DENOM
CI (K) = - WDF2 * DDZ2 / DENOM2
ELSE
! ----------------------------------------------------------------------
! SLOPE OF BOTTOM LAYER IS INTRODUCED
! ----------------------------------------------------------------------
! ----------------------------------------------------------------------
! RETRIEVE THE SOIL WATER DIFFUSIVITY AND HYDRAULIC CONDUCTIVITY FOR
! THIS LAYER
! ----------------------------------------------------------------------
SLOPX = SLOPE
CALL WDFCND
(WDF2,WCND2,SH2OA (NSOIL),SMCMAX,BEXP,DKSAT,DWSAT, &
SICEMAX)
! ----------------------------------------------------------------------
! CALC A PARTIAL PRODUCT FOR LATER USE IN CALC'NG RHSTT
! ----------------------------------------------------------------------
! ----------------------------------------------------------------------
! SET MATRIX COEF CI TO ZERO
! ----------------------------------------------------------------------
DSMDZ2 = 0.0
CI (K) = 0.0
! ----------------------------------------------------------------------
! CALC RHSTT FOR THIS LAYER AFTER CALC'NG ITS NUMERATOR
! ----------------------------------------------------------------------
END IF
NUMER = (WDF2 * DSMDZ2) + SLOPX * WCND2- (WDF * DSMDZ) &
- WCND+ ET (K)
! ----------------------------------------------------------------------
! CALC MATRIX COEFS, AI, AND BI FOR THIS LAYER
! ----------------------------------------------------------------------
RHSTT (K) = NUMER / ( - DENOM2)
AI (K) = - WDF * DDZ / DENOM2
! ----------------------------------------------------------------------
! RESET VALUES OF WDF, WCND, DSMDZ, AND DDZ FOR LOOP TO NEXT LYR
! RUNOFF2: SUB-SURFACE OR BASEFLOW RUNOFF
! ----------------------------------------------------------------------
BI (K) = - ( AI (K) + CI (K) )
IF (K .eq. NSOIL) THEN
RUNOFF2 = SLOPX * WCND2
END IF
IF (K .ne. NSOIL) THEN
WDF = WDF2
WCND = WCND2
DSMDZ = DSMDZ2
DDZ = DDZ2
END IF
END DO
! ----------------------------------------------------------------------
END SUBROUTINE SRT
! ----------------------------------------------------------------------
SUBROUTINE SSTEP (SH2OOUT,SH2OIN,CMC,RHSTT,RHSCT,DT, & 6,2
NSOIL,SMCMAX,CMCMAX,RUNOFF3,ZSOIL,SMC,SICE, &
AI,BI,CI)
! ----------------------------------------------------------------------
! SUBROUTINE SSTEP
! ----------------------------------------------------------------------
! CALCULATE/UPDATE SOIL MOISTURE CONTENT VALUES AND CANOPY MOISTURE
! CONTENT VALUES.
! ----------------------------------------------------------------------
IMPLICIT NONE
INTEGER, INTENT(IN) :: NSOIL
INTEGER :: I, K, KK11
REAL, INTENT(IN) :: CMCMAX, DT, SMCMAX
REAL, INTENT(OUT) :: RUNOFF3
REAL, INTENT(INOUT) :: CMC
REAL, DIMENSION(1:NSOIL), INTENT(IN) :: SH2OIN, SICE, ZSOIL
REAL, DIMENSION(1:NSOIL), INTENT(OUT) :: SH2OOUT
REAL, DIMENSION(1:NSOIL), INTENT(INOUT) :: RHSTT, SMC
REAL, DIMENSION(1:NSOLD), INTENT(INOUT) :: AI, BI, CI
REAL, DIMENSION(1:NSOIL) :: RHSTTin
REAL, DIMENSION(1:NSOLD) :: CIin
REAL :: DDZ, RHSCT, STOT, WPLUS
! ----------------------------------------------------------------------
! CREATE 'AMOUNT' VALUES OF VARIABLES TO BE INPUT TO THE
! TRI-DIAGONAL MATRIX ROUTINE.
! ----------------------------------------------------------------------
DO K = 1,NSOIL
RHSTT (K) = RHSTT (K) * DT
AI (K) = AI (K) * DT
BI (K) = 1. + BI (K) * DT
CI (K) = CI (K) * DT
END DO
! ----------------------------------------------------------------------
! COPY VALUES FOR INPUT VARIABLES BEFORE CALL TO ROSR12
! ----------------------------------------------------------------------
DO K = 1,NSOIL
RHSTTin (K) = RHSTT (K)
END DO
DO K = 1,NSOLD
CIin (K) = CI (K)
END DO
! ----------------------------------------------------------------------
! CALL ROSR12 TO SOLVE THE TRI-DIAGONAL MATRIX
! ----------------------------------------------------------------------
CALL ROSR12
(CI,AI,BI,CIin,RHSTTin,RHSTT,NSOIL)
! ----------------------------------------------------------------------
! SUM THE PREVIOUS SMC VALUE AND THE MATRIX SOLUTION TO GET A
! NEW VALUE. MIN ALLOWABLE VALUE OF SMC WILL BE 0.02.
! RUNOFF3: RUNOFF WITHIN SOIL LAYERS
! ----------------------------------------------------------------------
WPLUS = 0.0
RUNOFF3 = 0.
DDZ = - ZSOIL (1)
DO K = 1,NSOIL
IF (K /= 1) DDZ = ZSOIL (K - 1) - ZSOIL (K)
SH2OOUT (K) = SH2OIN (K) + CI (K) + WPLUS / DDZ
STOT = SH2OOUT (K) + SICE (K)
IF (STOT > SMCMAX) THEN
IF (K .eq. 1) THEN
DDZ = - ZSOIL (1)
ELSE
KK11 = K - 1
DDZ = - ZSOIL (K) + ZSOIL (KK11)
END IF
WPLUS = (STOT - SMCMAX) * DDZ
ELSE
WPLUS = 0.
END IF
SMC (K) = MAX ( MIN (STOT,SMCMAX),0.02 )
SH2OOUT (K) = MAX ( (SMC (K) - SICE (K)),0.0)
END DO
! ----------------------------------------------------------------------
! UPDATE CANOPY WATER CONTENT/INTERCEPTION (CMC). CONVERT RHSCT TO
! AN 'AMOUNT' VALUE AND ADD TO PREVIOUS CMC VALUE TO GET NEW CMC.
! ----------------------------------------------------------------------
RUNOFF3 = WPLUS
CMC = CMC + DT * RHSCT
IF (CMC < 1.E-20) CMC = 0.0
CMC = MIN (CMC,CMCMAX)
! ----------------------------------------------------------------------
END SUBROUTINE SSTEP
! ----------------------------------------------------------------------
SUBROUTINE TBND (TU,TB,ZSOIL,ZBOT,K,NSOIL,TBND1) 6
! ----------------------------------------------------------------------
! SUBROUTINE TBND
! ----------------------------------------------------------------------
! CALCULATE TEMPERATURE ON THE BOUNDARY OF THE LAYER BY INTERPOLATION OF
! THE MIDDLE LAYER TEMPERATURES
! ----------------------------------------------------------------------
IMPLICIT NONE
INTEGER, INTENT(IN) :: NSOIL
INTEGER :: K
REAL, INTENT(IN) :: TB, TU, ZBOT
REAL, INTENT(OUT) :: TBND1
REAL, DIMENSION(1:NSOIL), INTENT(IN) :: ZSOIL
REAL :: ZB, ZUP
REAL, PARAMETER :: T0 = 273.15
! ----------------------------------------------------------------------
! USE SURFACE TEMPERATURE ON THE TOP OF THE FIRST LAYER
! ----------------------------------------------------------------------
IF (K == 1) THEN
ZUP = 0.
ELSE
ZUP = ZSOIL (K -1)
END IF
! ----------------------------------------------------------------------
! USE DEPTH OF THE CONSTANT BOTTOM TEMPERATURE WHEN INTERPOLATE
! TEMPERATURE INTO THE LAST LAYER BOUNDARY
! ----------------------------------------------------------------------
IF (K == NSOIL) THEN
ZB = 2.* ZBOT - ZSOIL (K)
ELSE
ZB = ZSOIL (K +1)
END IF
! ----------------------------------------------------------------------
! LINEAR INTERPOLATION BETWEEN THE AVERAGE LAYER TEMPERATURES
! ----------------------------------------------------------------------
TBND1 = TU + (TB - TU)* (ZUP - ZSOIL (K))/ (ZUP - ZB)
! ----------------------------------------------------------------------
END SUBROUTINE TBND
! ----------------------------------------------------------------------
SUBROUTINE TDFCND ( DF, SMC, QZ, SMCMAX, SH2O) 8
! ----------------------------------------------------------------------
! SUBROUTINE TDFCND
! ----------------------------------------------------------------------
! CALCULATE THERMAL DIFFUSIVITY AND CONDUCTIVITY OF THE SOIL FOR A GIVEN
! POINT AND TIME.
! ----------------------------------------------------------------------
! PETERS-LIDARD APPROACH (PETERS-LIDARD et al., 1998)
! June 2001 CHANGES: FROZEN SOIL CONDITION.
! ----------------------------------------------------------------------
IMPLICIT NONE
REAL, INTENT(IN) :: QZ, SMC, SMCMAX, SH2O
REAL, INTENT(OUT) :: DF
REAL :: AKE, GAMMD, THKDRY, THKICE, THKO, &
THKQTZ,THKSAT,THKS,THKW,SATRATIO,XU, &
XUNFROZ
! ----------------------------------------------------------------------
! WE NOW GET QUARTZ AS AN INPUT ARGUMENT (SET IN ROUTINE REDPRM):
! DATA QUARTZ /0.82, 0.10, 0.25, 0.60, 0.52,
! & 0.35, 0.60, 0.40, 0.82/
! ----------------------------------------------------------------------
! IF THE SOIL HAS ANY MOISTURE CONTENT COMPUTE A PARTIAL SUM/PRODUCT
! OTHERWISE USE A CONSTANT VALUE WHICH WORKS WELL WITH MOST SOILS
! ----------------------------------------------------------------------
! THKW ......WATER THERMAL CONDUCTIVITY
! THKQTZ ....THERMAL CONDUCTIVITY FOR QUARTZ
! THKO ......THERMAL CONDUCTIVITY FOR OTHER SOIL COMPONENTS
! THKS ......THERMAL CONDUCTIVITY FOR THE SOLIDS COMBINED(QUARTZ+OTHER)
! THKICE ....ICE THERMAL CONDUCTIVITY
! SMCMAX ....POROSITY (= SMCMAX)
! QZ .........QUARTZ CONTENT (SOIL TYPE DEPENDENT)
! ----------------------------------------------------------------------
! USE AS IN PETERS-LIDARD, 1998 (MODIF. FROM JOHANSEN, 1975).
! PABLO GRUNMANN, 08/17/98
! REFS.:
! FAROUKI, O.T.,1986: THERMAL PROPERTIES OF SOILS. SERIES ON ROCK
! AND SOIL MECHANICS, VOL. 11, TRANS TECH, 136 PP.
! JOHANSEN, O., 1975: THERMAL CONDUCTIVITY OF SOILS. PH.D. THESIS,
! UNIVERSITY OF TRONDHEIM,
! PETERS-LIDARD, C. D., ET AL., 1998: THE EFFECT OF SOIL THERMAL
! CONDUCTIVITY PARAMETERIZATION ON SURFACE ENERGY FLUXES
! AND TEMPERATURES. JOURNAL OF THE ATMOSPHERIC SCIENCES,
! VOL. 55, PP. 1209-1224.
! ----------------------------------------------------------------------
! NEEDS PARAMETERS
! POROSITY(SOIL TYPE):
! POROS = SMCMAX
! SATURATION RATIO:
! PARAMETERS W/(M.K)
SATRATIO = SMC / SMCMAX
THKICE = 2.2
THKW = 0.57
! IF (QZ .LE. 0.2) THKO = 3.0
THKO = 2.0
! SOLIDS' CONDUCTIVITY
! QUARTZ' CONDUCTIVITY
THKQTZ = 7.7
! UNFROZEN FRACTION (FROM 1., i.e., 100%LIQUID, TO 0. (100% FROZEN))
THKS = (THKQTZ ** QZ)* (THKO ** (1. - QZ))
! UNFROZEN VOLUME FOR SATURATION (POROSITY*XUNFROZ)
XUNFROZ = SH2O / SMC
! SATURATED THERMAL CONDUCTIVITY
XU = XUNFROZ * SMCMAX
! DRY DENSITY IN KG/M3
THKSAT = THKS ** (1. - SMCMAX)* THKICE ** (SMCMAX - XU)* THKW ** &
(XU)
! DRY THERMAL CONDUCTIVITY IN W.M-1.K-1
GAMMD = (1. - SMCMAX)*2700.
THKDRY = (0.135* GAMMD+ 64.7)/ (2700. - 0.947* GAMMD)
! FROZEN
IF ( (SH2O + 0.0005) < SMC ) THEN
AKE = SATRATIO
! UNFROZEN
! RANGE OF VALIDITY FOR THE KERSTEN NUMBER (AKE)
ELSE
! KERSTEN NUMBER (USING "FINE" FORMULA, VALID FOR SOILS CONTAINING AT
! LEAST 5% OF PARTICLES WITH DIAMETER LESS THAN 2.E-6 METERS.)
! (FOR "COARSE" FORMULA, SEE PETERS-LIDARD ET AL., 1998).
IF ( SATRATIO > 0.1 ) THEN
AKE = LOG10 (SATRATIO) + 1.0
! USE K = KDRY
ELSE
AKE = 0.0
END IF
! THERMAL CONDUCTIVITY
END IF
DF = AKE * (THKSAT - THKDRY) + THKDRY
! ----------------------------------------------------------------------
END SUBROUTINE TDFCND
! ----------------------------------------------------------------------
SUBROUTINE TMPAVG (TAVG,TUP,TM,TDN,ZSOIL,NSOIL,K) 2
! ----------------------------------------------------------------------
! SUBROUTINE TMPAVG
! ----------------------------------------------------------------------
! CALCULATE SOIL LAYER AVERAGE TEMPERATURE (TAVG) IN FREEZING/THAWING
! LAYER USING UP, DOWN, AND MIDDLE LAYER TEMPERATURES (TUP, TDN, TM),
! WHERE TUP IS AT TOP BOUNDARY OF LAYER, TDN IS AT BOTTOM BOUNDARY OF
! LAYER. TM IS LAYER PROGNOSTIC STATE TEMPERATURE.
! ----------------------------------------------------------------------
IMPLICIT NONE
INTEGER K
INTEGER NSOIL
REAL DZ
REAL DZH
REAL T0
REAL TAVG
REAL TDN
REAL TM
REAL TUP
REAL X0
REAL XDN
REAL XUP
REAL ZSOIL (NSOIL)
! ----------------------------------------------------------------------
PARAMETER (T0 = 2.7315E2)
IF (K .eq. 1) THEN
DZ = - ZSOIL (1)
ELSE
DZ = ZSOIL (K -1) - ZSOIL (K)
END IF
DZH = DZ *0.5
IF (TUP .lt. T0) THEN
IF (TM .lt. T0) THEN
! ----------------------------------------------------------------------
! TUP, TM, TDN < T0
! ----------------------------------------------------------------------
IF (TDN .lt. T0) THEN
TAVG = (TUP + 2.0* TM + TDN)/ 4.0
! ----------------------------------------------------------------------
! TUP & TM < T0, TDN .ge. T0
! ----------------------------------------------------------------------
ELSE
X0 = (T0- TM) * DZH / (TDN - TM)
TAVG = 0.5 * (TUP * DZH + TM * (DZH + X0) + T0* ( &
& 2.* DZH - X0)) / DZ
END IF
ELSE
! ----------------------------------------------------------------------
! TUP < T0, TM .ge. T0, TDN < T0
! ----------------------------------------------------------------------
IF (TDN .lt. T0) THEN
XUP = (T0- TUP) * DZH / (TM - TUP)
XDN = DZH - (T0- TM) * DZH / (TDN - TM)
TAVG = 0.5 * (TUP * XUP + T0* (2.* DZ - XUP - XDN) &
& + TDN * XDN) / DZ
! ----------------------------------------------------------------------
! TUP < T0, TM .ge. T0, TDN .ge. T0
! ----------------------------------------------------------------------
ELSE
XUP = (T0- TUP) * DZH / (TM - TUP)
TAVG = 0.5 * (TUP * XUP + T0* (2.* DZ - XUP)) / DZ
END IF
END IF
ELSE
IF (TM .lt. T0) THEN
! ----------------------------------------------------------------------
! TUP .ge. T0, TM < T0, TDN < T0
! ----------------------------------------------------------------------
IF (TDN .lt. T0) THEN
XUP = DZH - (T0- TUP) * DZH / (TM - TUP)
TAVG = 0.5 * (T0* (DZ - XUP) + TM * (DZH + XUP) &
& + TDN * DZH) / DZ
! ----------------------------------------------------------------------
! TUP .ge. T0, TM < T0, TDN .ge. T0
! ----------------------------------------------------------------------
ELSE
XUP = DZH - (T0- TUP) * DZH / (TM - TUP)
XDN = (T0- TM) * DZH / (TDN - TM)
TAVG = 0.5 * (T0* (2.* DZ - XUP - XDN) + TM * &
& (XUP + XDN)) / DZ
END IF
ELSE
! ----------------------------------------------------------------------
! TUP .ge. T0, TM .ge. T0, TDN < T0
! ----------------------------------------------------------------------
IF (TDN .lt. T0) THEN
XDN = DZH - (T0- TM) * DZH / (TDN - TM)
TAVG = (T0* (DZ - XDN) +0.5* (T0+ TDN)* XDN) / DZ
! ----------------------------------------------------------------------
! TUP .ge. T0, TM .ge. T0, TDN .ge. T0
! ----------------------------------------------------------------------
ELSE
TAVG = (TUP + 2.0* TM + TDN) / 4.0
END IF
END IF
END IF
! ----------------------------------------------------------------------
END SUBROUTINE TMPAVG
! ----------------------------------------------------------------------
SUBROUTINE TRANSP (ET,NSOIL,ETP1,SMC,CMC,ZSOIL,SHDFAC,SMCWLT, & 2
& CMCMAX,PC,CFACTR,SMCREF,SFCTMP,Q2,NROOT, &
& RTDIS)
! ----------------------------------------------------------------------
! SUBROUTINE TRANSP
! ----------------------------------------------------------------------
! CALCULATE TRANSPIRATION FOR THE VEG CLASS.
! ----------------------------------------------------------------------
IMPLICIT NONE
INTEGER I
INTEGER K
INTEGER NSOIL
INTEGER NROOT
REAL CFACTR
REAL CMC
REAL CMCMAX
REAL DENOM
REAL ET (NSOIL)
REAL ETP1
REAL ETP1A
!.....REAL PART(NSOIL)
REAL GX (7)
REAL PC
REAL Q2
REAL RTDIS (NSOIL)
REAL RTX
REAL SFCTMP
REAL SGX
REAL SHDFAC
REAL SMC (NSOIL)
REAL SMCREF
REAL SMCWLT
! ----------------------------------------------------------------------
! INITIALIZE PLANT TRANSP TO ZERO FOR ALL SOIL LAYERS.
! ----------------------------------------------------------------------
REAL ZSOIL (NSOIL)
DO K = 1,NSOIL
ET (K) = 0.
! ----------------------------------------------------------------------
! CALCULATE AN 'ADJUSTED' POTENTIAL TRANSPIRATION
! IF STATEMENT BELOW TO AVOID TANGENT LINEAR PROBLEMS NEAR ZERO
! NOTE: GX AND OTHER TERMS BELOW REDISTRIBUTE TRANSPIRATION BY LAYER,
! ET(K), AS A FUNCTION OF SOIL MOISTURE AVAILABILITY, WHILE PRESERVING
! TOTAL ETP1A.
! ----------------------------------------------------------------------
END DO
IF (CMC .ne. 0.0) THEN
ETP1A = SHDFAC * PC * ETP1 * (1.0- (CMC / CMCMAX) ** CFACTR)
ELSE
ETP1A = SHDFAC * PC * ETP1
END IF
SGX = 0.0
DO I = 1,NROOT
GX (I) = ( SMC (I) - SMCWLT ) / ( SMCREF - SMCWLT )
GX (I) = MAX ( MIN ( GX (I), 1. ), 0. )
SGX = SGX + GX (I)
END DO
SGX = SGX / NROOT
DENOM = 0.
DO I = 1,NROOT
RTX = RTDIS (I) + GX (I) - SGX
GX (I) = GX (I) * MAX ( RTX, 0. )
DENOM = DENOM + GX (I)
END DO
IF (DENOM .le. 0.0) DENOM = 1.
DO I = 1,NROOT
ET (I) = ETP1A * GX (I) / DENOM
! ----------------------------------------------------------------------
! ABOVE CODE ASSUMES A VERTICALLY UNIFORM ROOT DISTRIBUTION
! CODE BELOW TESTS A VARIABLE ROOT DISTRIBUTION
! ----------------------------------------------------------------------
! ET(1) = ( ZSOIL(1) / ZSOIL(NROOT) ) * GX * ETP1A
! ET(1) = ( ZSOIL(1) / ZSOIL(NROOT) ) * ETP1A
! ----------------------------------------------------------------------
! USING ROOT DISTRIBUTION AS WEIGHTING FACTOR
! ----------------------------------------------------------------------
! ET(1) = RTDIS(1) * ETP1A
! ET(1) = ETP1A * PART(1)
! ----------------------------------------------------------------------
! LOOP DOWN THRU THE SOIL LAYERS REPEATING THE OPERATION ABOVE,
! BUT USING THE THICKNESS OF THE SOIL LAYER (RATHER THAN THE
! ABSOLUTE DEPTH OF EACH LAYER) IN THE FINAL CALCULATION.
! ----------------------------------------------------------------------
! DO K = 2,NROOT
! GX = ( SMC(K) - SMCWLT ) / ( SMCREF - SMCWLT )
! GX = MAX ( MIN ( GX, 1. ), 0. )
! TEST CANOPY RESISTANCE
! GX = 1.0
! ET(K) = ((ZSOIL(K)-ZSOIL(K-1))/ZSOIL(NROOT))*GX*ETP1A
! ET(K) = ((ZSOIL(K)-ZSOIL(K-1))/ZSOIL(NROOT))*ETP1A
! ----------------------------------------------------------------------
! USING ROOT DISTRIBUTION AS WEIGHTING FACTOR
! ----------------------------------------------------------------------
! ET(K) = RTDIS(K) * ETP1A
! ET(K) = ETP1A*PART(K)
! END DO
END DO
! ----------------------------------------------------------------------
END SUBROUTINE TRANSP
! ----------------------------------------------------------------------
SUBROUTINE WDFCND (WDF,WCND,SMC,SMCMAX,BEXP,DKSAT,DWSAT, & 8
& SICEMAX)
! ----------------------------------------------------------------------
! SUBROUTINE WDFCND
! ----------------------------------------------------------------------
! CALCULATE SOIL WATER DIFFUSIVITY AND SOIL HYDRAULIC CONDUCTIVITY.
! ----------------------------------------------------------------------
IMPLICIT NONE
REAL BEXP
REAL DKSAT
REAL DWSAT
REAL EXPON
REAL FACTR1
REAL FACTR2
REAL SICEMAX
REAL SMC
REAL SMCMAX
REAL VKwgt
REAL WCND
! ----------------------------------------------------------------------
! CALC THE RATIO OF THE ACTUAL TO THE MAX PSBL SOIL H2O CONTENT
! ----------------------------------------------------------------------
REAL WDF
FACTR1 = 0.2 / SMCMAX
! ----------------------------------------------------------------------
! PREP AN EXPNTL COEF AND CALC THE SOIL WATER DIFFUSIVITY
! ----------------------------------------------------------------------
FACTR2 = SMC / SMCMAX
EXPON = BEXP + 2.0
! ----------------------------------------------------------------------
! FROZEN SOIL HYDRAULIC DIFFUSIVITY. VERY SENSITIVE TO THE VERTICAL
! GRADIENT OF UNFROZEN WATER. THE LATTER GRADIENT CAN BECOME VERY
! EXTREME IN FREEZING/THAWING SITUATIONS, AND GIVEN THE RELATIVELY
! FEW AND THICK SOIL LAYERS, THIS GRADIENT SUFFERES SERIOUS
! TRUNCTION ERRORS YIELDING ERRONEOUSLY HIGH VERTICAL TRANSPORTS OF
! UNFROZEN WATER IN BOTH DIRECTIONS FROM HUGE HYDRAULIC DIFFUSIVITY.
! THEREFORE, WE FOUND WE HAD TO ARBITRARILY CONSTRAIN WDF
! --
! VERSION D_10CM: ........ FACTR1 = 0.2/SMCMAX
! WEIGHTED APPROACH...................... PABLO GRUNMANN, 28_SEP_1999.
! ----------------------------------------------------------------------
WDF = DWSAT * FACTR2 ** EXPON
IF (SICEMAX .gt. 0.0) THEN
VKWGT = 1./ (1. + (500.* SICEMAX)**3.)
WDF = VKWGT * WDF + (1. - VKWGT)* DWSAT * FACTR1** EXPON
! ----------------------------------------------------------------------
! RESET THE EXPNTL COEF AND CALC THE HYDRAULIC CONDUCTIVITY
! ----------------------------------------------------------------------
END IF
EXPON = (2.0 * BEXP) + 3.0
WCND = DKSAT * FACTR2 ** EXPON
! ----------------------------------------------------------------------
END SUBROUTINE WDFCND
! ----------------------------------------------------------------------
SUBROUTINE SFCDIF_off (ZLM,Z0,THZ0,THLM,SFCSPD,CZIL,AKMS,AKHS)
! ----------------------------------------------------------------------
! SUBROUTINE SFCDIF (renamed SFCDIF_off to avoid clash with Eta PBL)
! ----------------------------------------------------------------------
! CALCULATE SURFACE LAYER EXCHANGE COEFFICIENTS VIA ITERATIVE PROCESS.
! SEE CHEN ET AL (1997, BLM)
! ----------------------------------------------------------------------
IMPLICIT NONE
REAL WWST, WWST2, G, VKRM, EXCM, BETA, BTG, ELFC, WOLD, WNEW
REAL PIHF, EPSU2, EPSUST, EPSIT, EPSA, ZTMIN, ZTMAX, HPBL, &
& SQVISC
REAL RIC, RRIC, FHNEU, RFC, RFAC, ZZ, PSLMU, PSLMS, PSLHU, &
& PSLHS
REAL XX, PSPMU, YY, PSPMS, PSPHU, PSPHS, ZLM, Z0, THZ0, THLM
REAL SFCSPD, CZIL, AKMS, AKHS, ZILFC, ZU, ZT, RDZ, CXCH
REAL DTHV, DU2, BTGH, WSTAR2, USTAR, ZSLU, ZSLT, RLOGU, RLOGT
REAL RLMO, ZETALT, ZETALU, ZETAU, ZETAT, XLU4, XLT4, XU4, XT4
!CC ......REAL ZTFC
REAL XLU, XLT, XU, XT, PSMZ, SIMM, PSHZ, SIMH, USTARK, RLMN, &
& RLMA
INTEGER ITRMX, ILECH, ITR
PARAMETER &
& (WWST = 1.2,WWST2 = WWST * WWST,G = 9.8,VKRM = 0.40, &
& EXCM = 0.001 &
& ,BETA = 1./270.,BTG = BETA * G,ELFC = VKRM * BTG &
& ,WOLD =.15,WNEW = 1. - WOLD,ITRMX = 05, &
& PIHF = 3.14159265/2.)
PARAMETER &
& (EPSU2 = 1.E-4,EPSUST = 0.07,EPSIT = 1.E-4,EPSA = 1.E-8 &
& ,ZTMIN = -5.,ZTMAX = 1.,HPBL = 1000.0 &
& ,SQVISC = 258.2)
PARAMETER &
& (RIC = 0.183,RRIC = 1.0/ RIC,FHNEU = 0.8,RFC = 0.191 &
& ,RFAC = RIC / (FHNEU * RFC * RFC))
! ----------------------------------------------------------------------
! NOTE: THE TWO CODE BLOCKS BELOW DEFINE FUNCTIONS
! ----------------------------------------------------------------------
! LECH'S SURFACE FUNCTIONS
! ----------------------------------------------------------------------
PSLMU (ZZ)= -0.96* log (1.0-4.5* ZZ)
PSLMS (ZZ)= ZZ * RRIC -2.076* (1. -1./ (ZZ +1.))
PSLHU (ZZ)= -0.96* log (1.0-4.5* ZZ)
! ----------------------------------------------------------------------
! PAULSON'S SURFACE FUNCTIONS
! ----------------------------------------------------------------------
PSLHS (ZZ)= ZZ * RFAC -2.076* (1. -1./ (ZZ +1.))
PSPMU (XX)= -2.* log ( (XX +1.)*0.5) - log ( (XX * XX +1.)*0.5) &
& +2.* ATAN (XX) &
&- PIHF
PSPMS (YY)= 5.* YY
PSPHU (XX)= -2.* log ( (XX * XX +1.)*0.5)
! ----------------------------------------------------------------------
! THIS ROUTINE SFCDIF CAN HANDLE BOTH OVER OPEN WATER (SEA, OCEAN) AND
! OVER SOLID SURFACE (LAND, SEA-ICE).
! ----------------------------------------------------------------------
PSPHS (YY)= 5.* YY
! ----------------------------------------------------------------------
! ZTFC: RATIO OF ZOH/ZOM LESS OR EQUAL THAN 1
! C......ZTFC=0.1
! CZIL: CONSTANT C IN Zilitinkevich, S. S.1995,:NOTE ABOUT ZT
! ----------------------------------------------------------------------
ILECH = 0
! ----------------------------------------------------------------------
ZILFC = - CZIL * VKRM * SQVISC
! C.......ZT=Z0*ZTFC
ZU = Z0
RDZ = 1./ ZLM
CXCH = EXCM * RDZ
DTHV = THLM - THZ0
! ----------------------------------------------------------------------
! BELJARS CORRECTION OF USTAR
! ----------------------------------------------------------------------
DU2 = MAX (SFCSPD * SFCSPD,EPSU2)
!cc If statements to avoid TANGENT LINEAR problems near zero
BTGH = BTG * HPBL
IF (BTGH * AKHS * DTHV .ne. 0.0) THEN
WSTAR2 = WWST2* ABS (BTGH * AKHS * DTHV)** (2./3.)
ELSE
WSTAR2 = 0.0
END IF
! ----------------------------------------------------------------------
! ZILITINKEVITCH APPROACH FOR ZT
! ----------------------------------------------------------------------
USTAR = MAX (SQRT (AKMS * SQRT (DU2+ WSTAR2)),EPSUST)
! ----------------------------------------------------------------------
ZT = EXP (ZILFC * SQRT (USTAR * Z0))* Z0
ZSLU = ZLM + ZU
! PRINT*,'ZSLT=',ZSLT
! PRINT*,'ZLM=',ZLM
! PRINT*,'ZT=',ZT
ZSLT = ZLM + ZT
RLOGU = log (ZSLU / ZU)
RLOGT = log (ZSLT / ZT)
! PRINT*,'RLMO=',RLMO
! PRINT*,'ELFC=',ELFC
! PRINT*,'AKHS=',AKHS
! PRINT*,'DTHV=',DTHV
! PRINT*,'USTAR=',USTAR
RLMO = ELFC * AKHS * DTHV / USTAR **3
! ----------------------------------------------------------------------
! 1./MONIN-OBUKKHOV LENGTH-SCALE
! ----------------------------------------------------------------------
DO ITR = 1,ITRMX
ZETALT = MAX (ZSLT * RLMO,ZTMIN)
RLMO = ZETALT / ZSLT
ZETALU = ZSLU * RLMO
ZETAU = ZU * RLMO
ZETAT = ZT * RLMO
IF (ILECH .eq. 0) THEN
IF (RLMO .lt. 0.)THEN
XLU4 = 1. -16.* ZETALU
XLT4 = 1. -16.* ZETALT
XU4 = 1. -16.* ZETAU
XT4 = 1. -16.* ZETAT
XLU = SQRT (SQRT (XLU4))
XLT = SQRT (SQRT (XLT4))
XU = SQRT (SQRT (XU4))
XT = SQRT (SQRT (XT4))
! PRINT*,'-----------1------------'
! PRINT*,'PSMZ=',PSMZ
! PRINT*,'PSPMU(ZETAU)=',PSPMU(ZETAU)
! PRINT*,'XU=',XU
! PRINT*,'------------------------'
PSMZ = PSPMU (XU)
SIMM = PSPMU (XLU) - PSMZ + RLOGU
PSHZ = PSPHU (XT)
SIMH = PSPHU (XLT) - PSHZ + RLOGT
ELSE
ZETALU = MIN (ZETALU,ZTMAX)
ZETALT = MIN (ZETALT,ZTMAX)
! PRINT*,'-----------2------------'
! PRINT*,'PSMZ=',PSMZ
! PRINT*,'PSPMS(ZETAU)=',PSPMS(ZETAU)
! PRINT*,'ZETAU=',ZETAU
! PRINT*,'------------------------'
PSMZ = PSPMS (ZETAU)
SIMM = PSPMS (ZETALU) - PSMZ + RLOGU
PSHZ = PSPHS (ZETAT)
SIMH = PSPHS (ZETALT) - PSHZ + RLOGT
END IF
! ----------------------------------------------------------------------
! LECH'S FUNCTIONS
! ----------------------------------------------------------------------
ELSE
IF (RLMO .lt. 0.)THEN
! PRINT*,'-----------3------------'
! PRINT*,'PSMZ=',PSMZ
! PRINT*,'PSLMU(ZETAU)=',PSLMU(ZETAU)
! PRINT*,'ZETAU=',ZETAU
! PRINT*,'------------------------'
PSMZ = PSLMU (ZETAU)
SIMM = PSLMU (ZETALU) - PSMZ + RLOGU
PSHZ = PSLHU (ZETAT)
SIMH = PSLHU (ZETALT) - PSHZ + RLOGT
ELSE
ZETALU = MIN (ZETALU,ZTMAX)
ZETALT = MIN (ZETALT,ZTMAX)
! PRINT*,'-----------4------------'
! PRINT*,'PSMZ=',PSMZ
! PRINT*,'PSLMS(ZETAU)=',PSLMS(ZETAU)
! PRINT*,'ZETAU=',ZETAU
! PRINT*,'------------------------'
PSMZ = PSLMS (ZETAU)
SIMM = PSLMS (ZETALU) - PSMZ + RLOGU
PSHZ = PSLHS (ZETAT)
SIMH = PSLHS (ZETALT) - PSHZ + RLOGT
END IF
! ----------------------------------------------------------------------
! BELJAARS CORRECTION FOR USTAR
! ----------------------------------------------------------------------
END IF
! ----------------------------------------------------------------------
! ZILITINKEVITCH FIX FOR ZT
! ----------------------------------------------------------------------
USTAR = MAX (SQRT (AKMS * SQRT (DU2+ WSTAR2)),EPSUST)
ZT = EXP (ZILFC * SQRT (USTAR * Z0))* Z0
ZSLT = ZLM + ZT
!-----------------------------------------------------------------------
RLOGT = log (ZSLT / ZT)
USTARK = USTAR * VKRM
AKMS = MAX (USTARK / SIMM,CXCH)
!-----------------------------------------------------------------------
! IF STATEMENTS TO AVOID TANGENT LINEAR PROBLEMS NEAR ZERO
!-----------------------------------------------------------------------
AKHS = MAX (USTARK / SIMH,CXCH)
IF (BTGH * AKHS * DTHV .ne. 0.0) THEN
WSTAR2 = WWST2* ABS (BTGH * AKHS * DTHV)** (2./3.)
ELSE
WSTAR2 = 0.0
END IF
!-----------------------------------------------------------------------
RLMN = ELFC * AKHS * DTHV / USTAR **3
!-----------------------------------------------------------------------
! IF(ABS((RLMN-RLMO)/RLMA).LT.EPSIT) GO TO 110
!-----------------------------------------------------------------------
RLMA = RLMO * WOLD+ RLMN * WNEW
!-----------------------------------------------------------------------
RLMO = RLMA
! PRINT*,'----------------------------'
! PRINT*,'SFCDIF OUTPUT ! ! ! ! ! ! ! ! ! ! ! !'
! PRINT*,'ZLM=',ZLM
! PRINT*,'Z0=',Z0
! PRINT*,'THZ0=',THZ0
! PRINT*,'THLM=',THLM
! PRINT*,'SFCSPD=',SFCSPD
! PRINT*,'CZIL=',CZIL
! PRINT*,'AKMS=',AKMS
! PRINT*,'AKHS=',AKHS
! PRINT*,'----------------------------'
END DO
! ----------------------------------------------------------------------
END SUBROUTINE SFCDIF_off
! ----------------------------------------------------------------------
END MODULE module_sf_noahlsm